Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309514 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Mathematics and Financial Economics [ISSN:] 1862-9660 [Volume:] 16 [Issue:] 2 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2022 [Pages:] 367-397
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
In this paper we investigate a utility maximization problem with drift uncertainty in a multivariate continuous-time Black–Scholes type financial market which may be incomplete. We impose a constraint on the admissible strategies that prevents a pure bond investment and we include uncertainty by means of ellipsoidal uncertainty sets for the drift. Our main results consist firstly in finding an explicit representation of the optimal strategy and the worst-case parameter, secondly in proving a minimax theorem that connects our robust utility maximization problem with the corresponding dual problem. Thirdly, we show that, as the degree of model uncertainty increases, the optimal strategy converges to a generalized uniform diversification strategy.
Schlagwörter: 
Portfolio optimization
Drift uncertainty
Minimax theorems
Diversification
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.