Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/306414 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Empirical Economics [ISSN:] 1435-8921 [Volume:] 64 [Issue:] 1 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2022 [Pages:] 465-504
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
We estimate the elasticities of the most important tax categories using a new quarterly database of discretionary tax measures for the USA, Germany, and the United Kingdom over the period 1980Q1 to 2018Q2. Employing Romer and Romer's (2009) narrative approach, we construct a policy-neutral dataset based on revenue figures from governmental records. Using this quantitative information, we are able to subtract policy-induced changes, which often are not considered in the literature. Furthermore, we estimate state-dependent elasticities. Our conclusions are as follows. (i) In Germany and the UK, long-term tax-to-base elasticities are generally higher than short-term elasticities, whereas results for the USA are mixed. (ii) Short-term base-to-output elasticities tend to be smaller than unity, whereas long-term elasticities are close to unity. (iii) German and UK tax-to-output elasticities in the short term are lower than long-term elasticities, with mixed results for the USA. (iv) For tax-to-base elasticities, we find business-cycle asymmetries across countries but not within countries. (v) For base-to-output elasticities, our results suggest few asymmetries across countries and more asymmetries across tax types. (vi) Typically, the above conclusions do not hold for corporate income tax.
Schlagwörter: 
Tax revenue
Tax base
Tax elasticity
Business cycle
Germany
United Kingdom
USA
JEL: 
E62
H20
H30
E32
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.