Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/306323 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Electronic Markets [ISSN:] 1422-8890 [Volume:] 32 [Issue:] 4 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2022 [Pages:] 2207-2233
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Assuming that potential biases of Artificial Intelligence (AI)-based systems can be identified and controlled for (e.g., by providing high quality training data), employing such systems to augment human resource (HR)-decision makers in candidate selection provides an opportunity to make selection processes more objective. However, as the final hiring decision is likely to remain with humans, prevalent human biases could still cause discrimination. This work investigates the impact of an AI-based system's candidate recommendations on humans' hiring decisions and how this relation could be moderated by an Explainable AI (XAI) approach. We used a self-developed platform and conducted an online experiment with 194 participants. Our quantitative and qualitative findings suggest that the recommendations of an AI-based system can reduce discrimination against older and female candidates but appear to cause fewer selections of foreign-race candidates. Contrary to our expectations, the same XAI approach moderated these effects differently depending on the context.
Schlagwörter: 
Explainable AI
Hiring
Bias
Discrimination
Ethics
JEL: 
O30
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.