Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/298023 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
Tinbergen Institute Discussion Paper No. TI 2024-016/III
Verlag: 
Tinbergen Institute, Amsterdam and Rotterdam
Zusammenfassung: 
This paper proposes a score-driven model for filtering time-varying causal parameters through the use of instrumental variables. In the presence of suitable instruments, we show that we can uncover dynamic causal relations between variables, even in the presence of regressor endogeneity which may arise as a result of simultaneity, omitted variables, or measurement errors. Due to the observation-driven nature of score models, the filtering method is simple and practical to implement. We establish the asymptotic properties of the maximum likelihood estimator and show that the instrumental-variable score-driven filter converges to the unique unknown causal path of the true parameter. We further analyze the finite sample properties of the filtered causal parameter in a comprehensive Monte Carlo exercise. Finally, we reveal the empirical relevance of this method in an application to aggregate consumption in macroeconomic data.
Schlagwörter: 
observation-driven models
time-varying parameters
causal inference
endogeneity
instrumental variables
JEL: 
C01
C22
C26
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
3.43 MB





Publikationen in EconStor sind urheberrechtlich geschützt.