Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/296352 
Autor:innen: 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Quantitative Economics [ISSN:] 1759-7331 [Volume:] 14 [Issue:] 4 [Year:] 2023 [Pages:] 1163-1198
Verlag: 
The Econometric Society, New Haven, CT
Zusammenfassung: 
When quantifying the importance of supply and demand for oil price fluctuations, a wide range of estimates have been reported. Models identified via a sharp upper bound on the short-run price elasticity of supply find supply shocks to be minor drivers. In turn, when replacing the upper bound with a weakly informative prior, supply shocks turn out to be substantially more important. In this paper, I revisit the evidence in a model that combines weakly informative priors with identification by non-Gaussianity. For this purpose, a SVAR is developed where the unknown distributions of the structural shocks are modeled nonparametrically. The empirical findings suggest that once identification by non-Gaussianity is incorporated into the model, posterior mass of the short-run oil supply elasticity shifts toward zero and oil supply shocks become minor drivers of oil prices. In terms of contributions to the forecast error variance of oil prices, the model arrives at median estimates of just 6% over a 16-month horizon.
Schlagwörter: 
Oil market
Structural Vector Autoregression (SVAR)
identification bynon-Gaussianity
nonparametric Bayes
JEL: 
C32
Q43
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
1.94 MB





Publikationen in EconStor sind urheberrechtlich geschützt.