Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/290164 
Autor:innen: 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] International Econometric Review (IER) [ISSN:] 1308-8815 [Volume:] 13 [Issue:] 4 [Year:] 2021 [Pages:] 89-117
Verlag: 
Econometric Research Association (ERA), Ankara
Zusammenfassung: 
This study examines the most optimal hedging portfolio for some selected emerging and developed markets by employing dynamic conditional variances and dynamic conditional covariances. Throughout the study, we used the daily index values of some selected investment instruments. The data contains the period from 02/01/2006 to 01/11/2018. In this essay, to obtain the most efficient hedging portfolio for each emerging country, firstly, we used Dcc-Figarch specifications to measure volatility. Secondly, we checked the robustness of the model by observing its forecast performance. As out-of-sample forecast performance has an ability to assist empirical evidence to outliers and data mining in a detailed way as well as it reflects better the information available to the forecaster in "real-time" out-of-sample forecasting is more appropriate to be used in this regard. Then, we calculated the mean absolute error (MAE) to detect the most fitted model. Thirdly, we mentioned two methods: Optimal hedge ratio and optimal portfolio weight. These methods are two hedging portfolio implications. Lastly, we will propose an economic rationale behind the results.
Schlagwörter: 
DCC-FIGARCH
Out of Sample Forecast
Mean Absolute Error
Optimal Hedge Ratio
Optimal Portfolio Weight
JEL: 
G11
G17
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc-nd Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
442.63 kB





Publikationen in EconStor sind urheberrechtlich geschützt.