Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/288268 
Autor:innen: 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] Finance and Stochastics [ISSN:] 1432-1122 [Volume:] 24 [Issue:] 4 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2020 [Pages:] 827-870
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
We show that the sequential closure of a family of probability measures on the canonical space of càdlàg paths satisfying Stricker’s uniform tightness condition is a weak∗ compact set of semimartingale measures in the dual pairing of bounded continuous functions and Radon measures, that is, the dual pairing from the Riesz representation theorem under topological assumptions on the path space. Similar results are obtained for quasi- and supermartingales under analogous conditions. In particular, we give a full characterisation of the strongest topology on the Skorokhod space for which these results are true.
Schlagwörter: 
Skorokhod space
Meyer–Zheng topology
JEL: 
C05
D30
B05
G05
C02
G13
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.