Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/286740 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] AStA Advances in Statistical Analysis [ISSN:] 1863-818X [Volume:] 106 [Issue:] 2 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2021 [Pages:] 287-314
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Socioeconomic indicators play a crucial role in monitoring political actions over time and across regions. Income-based indicators such as the median income of sub-populations can provide information on the impact of measures, e.g., on poverty reduction. Regional information is usually published on an aggregated level. Due to small sample sizes, these regional aggregates are often associated with large standard errors or are missing if the region is unsampled or the estimate is simply not published. For example, if the median income of Hispanic or Latino Americans from the American Community Survey is of interest, some county-year combinations are not available. Therefore, a comparison of different counties or time-points is partly not possible. We propose a new predictor based on small area estimation techniques for aggregated data and bivariate modeling. This predictor provides empirical best predictions for the partially unavailable county-year combinations. We provide an analytical approximation to the mean squared error. The theoretical findings are backed up by a large-scale simulation study. Finally, we return to the problem of estimating the county-year estimates for the median income of Hispanic or Latino Americans and externally validate the estimates.
Schlagwörter: 
Bivariate model
Fay–Herriot model
Median income
Monte Carlo simulation
Non-sampled domains
Small area estimation
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.