Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/278468 
Autor:innen: 
Erscheinungsjahr: 
2023
Schriftenreihe/Nr.: 
Center for Mathematical Economics Working Papers No. 678
Verlag: 
Bielefeld University, Center for Mathematical Economics (IMW), Bielefeld
Zusammenfassung: 
We consider a class of non-cooperative N-player non-zero-sum stochastic differential games with singular controls, in which each player can affect a linear stochastic differential equation in order to minimize a cost functional which is quadratic in the state and linear in the control. We call these games linear-quadratic-singular stochastic differential games. Under natural assumptions, we show the existence of open-loop Nash equilibria, which are characterized through a linear system of forward-backward stochastic differential equations. The proof is based on an approximation via a sequence of games in which players are restricted to play Lipschitz continuous strategies. We then discuss an application of these results to a model of capacity expansion in oligopoly markets.
Schlagwörter: 
Singular stochastic control
linear quadratic games
stochastic maximum principle
Nash equilibrium
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
540.28 kB





Publikationen in EconStor sind urheberrechtlich geschützt.