Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/274856 
Year of Publication: 
2022
Citation: 
[Journal:] Journal of Risk and Financial Management [ISSN:] 1911-8074 [Volume:] 15 [Issue:] 8 [Article No.:] 334 [Year:] 2022 [Pages:] 1-21
Publisher: 
MDPI, Basel
Abstract: 
This study classifies jumps into idiosyncratic jumps and co-jumps to quantitatively identify systematic risk and idiosyncratic risk by utilizing high-frequency data. We found that systematic risk occurs more frequently and has larger magnitudes than the idiosyncratic risk in an individual asset, which indicates that volatilities from one sector are largely derived from the contagious effect of other sectors. We further investigated the importance of idiosyncratic jumps and co-jumps to predict the sector-level S&P500 exchange-traded fund (ETF) volatility. It was found that the predictive content of co-jumps is higher than that of idiosyncratic jumps, suggesting that systematic risk is more informative than idiosyncratic risk in volatility forecasting. Additionally, we carried out Monte Carlo experiments designed to examine the relative performances of the four co-jump tests. The findings indicate that the BLT test and the co-exceedance rule of the LM test outperform other tests, while the co-exceedance rule of the LM test has larger power and a smaller empirical size than that of the BLT test.
Subjects: 
high-frequency data
co-jump tests
co-jumps
heterogeneous autoregressive model
volatility forecasting
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.