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Abstract: This study classifies jumps into idiosyncratic jumps and co-jumps to quantitatively identify
systematic risk and idiosyncratic risk by utilizing high-frequency data. We found that systematic
risk occurs more frequently and has larger magnitudes than the idiosyncratic risk in an individual
asset, which indicates that volatilities from one sector are largely derived from the contagious effect
of other sectors. We further investigated the importance of idiosyncratic jumps and co-jumps to
predict the sector-level S&P500 exchange-traded fund (ETF) volatility. It was found that the predictive
content of co-jumps is higher than that of idiosyncratic jumps, suggesting that systematic risk is more
informative than idiosyncratic risk in volatility forecasting. Additionally, we carried out Monte Carlo
experiments designed to examine the relative performances of the four co-jump tests. The findings
indicate that the BLT test and the co-exceedance rule of the LM test outperform other tests, while
the co-exceedance rule of the LM test has larger power and a smaller empirical size than that of the
BLT test.

Keywords: volatility forecasting; co-jumps; co-jump tests; heterogeneous autoregressive model;
high-frequency data

1. Introduction

Effective stock volatility prediction remains a key goal for empirical finance researchers.
For example, in portfolio management, agents utilize such predictions when allocating
assets and managing risk. Various discrete-time models (e.g., ARCH-GARCH models) and
continuous-time models (e.g., stochastic volatility and related models) have been developed
to address this issue. Key papers in the discrete-time framework include Harvey et al.
(1994), Andersen and Lund (1997), Hansen and Lunde (2005), Brandt and Jones (2006), and
the references therein. With the availability of high-frequency intraday data, Andersen
et al. (2001) developed a nonparametric volatility measure, which fostered the development
of a number of time series volatility forecasting models, including mixed data sampling
(MIDAS) models (see Ghysels et al. 2006; Ghysels and Sinko 2011) and long-memory ARMA
models (e.g., Andersen et al. 2003; Koopman et al. 2005). In particular, this has led to a
new class of parsimonious models, called heterogeneous autoregressive models of realized
volatility (HAR-RV), including lag terms of RV over different time horizons. The original
HAR forecasting model, introduced by Müller et al. (1997) and Corsi (2009), has been
augmented by separating jump and diffusion components, including a variety of jump
variation and intensity-related variables (e.g., Andersen et al. 2007; Corsi et al. 2010; Patton
and Sheppard 2015; Lahaye and Neely 2020). These models have been successfully applied
in various empirical applications.

In this study, we classified jumps into idiosyncratic jumps and co-jumps to decompose
jump risk into idiosyncratic risk and systematic risk, and further investigated the impor-
tance of idiosyncratic jumps and co-jumps to predict sector-level S&P500 exchange-traded
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fund (ETF) volatility. Previous literature mostly focused on studying jumps in individual as-
sets or a portfolio index and examining the predictability of jumps in forecasting volatilities
of different target assets without decomposition. Our motivation for decomposing jumps
into idiosyncratic jumps and co-jumps is to quantitatively identify idiosyncratic risk and
systematic risk in the individual asset by utilizing 5-min price data and, thus, evaluate the
predictability of idiosyncratic risk and systematic risk in forecasting volatilities of the target
asset. Our impetus for this decomposition is the hypothesis that systematic jumps (risk)
may be more informative than idiosyncratic jumps (risk) in volatility prediction. In addition,
the identification of systematic jumps from idiosyncratic jumps is important on its own. In
theory, idiosyncratic jumps can be alleviated in a weighted portfolio, whereas systematic
jumps cannot. Hence, the failure to distinguish idiosyncratic jumps (idiosyncratic risk)
from co-jumps (systematic risk) can lead to dire consequences when managing portfolios.

To evaluate this hypothesis, co-jumps and idiosyncratic jumps are included in predic-
tive HAR-type regressions, which enables us to assess their relative marginal predictive
content. Specifically, we compare the following alternative models: (i) the basic HAR model,
which includes the continuous component of realized volatility; (ii) the HAR model that
includes the continuous component and the co-jump component; (iii) the augmented HAR
model that includes the continuous component and the idiosyncratic jump component; and
(iv) the augmented HAR model that includes all three components. We predict the volatil-
ity of a variety of target assets, including the major S&P500 sector-level ETFs: financial
(XLF), technology (XLK), consumer staple (XLP), utility (XLU), and consumer discretionary
(XLY). Co-jumps and idiosyncratic jumps among sector-level ETFs are detected using the
co-exceedance rule of the LM jump test in Lee and Mykland (2007) and Gilder et al. (2014).

Our experiment focused on one-day-ahead volatility predictions using rolling win-
dows. Our sample period was from November 2008 to December 2019. For model evalu-
ation, we used in-sample adjusted R2, out-of-sample R2, and mean absolute forecasting
error (MAFE). In addition, we implement the model confidence set (MCS) tests of Hansen
et al. (2011) to compare the predictive abilities of all candidate models. We summarize our
main findings below.

First, among the four alternative HAR models in our forecasting experiment, models
augmented with co-jumps and with both co-jumps and idiosyncratic jumps showed the
largest predictive accuracy gains, in terms of in-sample adjusted R2, out-of-sample R2,
and the mean absolute forecasting error (MAFE). This result was robust across different
forecasting targets, i.e., S&P 500 sector ETF volatilities. For example, models augmented
with co-jumps showed smaller MAFEs than the baseline HAR model and HAR model aug-
mented with idiosyncratic jumps for all five target sectors, as listed in Table 10. Moreover,
models combining both co-jumps and idiosyncratic jumps showed even smaller MAFEs,
except for the financial sector. Moreover, the model confidence set (MCS) test, which
assigns the value of 1 to the best model and a larger number for superior models, also
suggests that models augmented with co-jumps or models augmented with both co-jumps
and idiosyncratic jumps are superior to other models.

Second, models with co-jumps resulted in higher explanatory power than models with
idiosyncratic jumps in both the in-sample and ex-ante forecasting experiments, in line with
the hypothesis that systematic risks (as represented by co-jumps) potentially play a larger
role than idiosyncratic risks in volatility forecasting.

Third, co-jumps occurred generally two to three times more frequently than idiosyn-
cratic jumps during our sample period from 2007 to 2019, and the frequency of occurrences
of both the co-jumps and idiosyncratic jumps increased especially during significant market
turmoil, such as the 2008 financial crisis and the 2011 European debt crisis. This finding is
consistent with the prevalence of systematic risk compared with the idiosyncratic risk in
the financial market.

Fourth, we also found that co-jumps have a larger magnitude and variation compared
to idiosyncratic jumps, suggesting systematic risk may pose a larger impact on the financial
market than idiosyncratic risk.
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Finally, given the importance of co-jump tests in our empirical analysis, we additionally
carried out a series of Monte Carlo experiments to examine the relative performances of
a number of widely used co-jump tests, including: (i) the BLT co-jump test in Bollerslev
et al. (2008); (ii) the JT co-jump test in Jacod and Todorov (2009); (iii) the co-exceedance
rule in Gilder et al. (2014) using the LM test in Lee and Mykland (2007); and (iv) the
co-exceedance rule using the intersection of the LM test and BNS test in Barndorff-Nielsen
and Shephard (2006). While univariate jump tests have been researched extensively1, the
co-jump testing literature used in our empirical analysis is relatively nascent. One strand
of the literature identifies co-jumps based on the identification of jumps in a portfolio (e.g.,
Bollerslev et al. 2008). Another strand uses univariate jump tests to identify co-jumps in
multivariate processes (e.g., Gilder et al. 2014). A third strand develops co-jump tests by
direct examination of multiple price processes (see Jacod and Todorov 2009; Mancini and
Gobbi 2012; Bandi and Reno 2016; Bibinger and Winkelmann 2015; Caporin et al. 2017).

Therefore, based on our Monte Carlo experiments, our key finding is that the BLT test
and the co-exceedance rule of the LM test outperform other tests, while the co-exceedance
rule of the LM test has larger power and a smaller empirical size than that of the BLT test.
The JT test, the BLT test, and the co-exceedance rule of the LM test all have good powers,
except for the co-exceedance rule of the intersection of the LM and BNS tests, and this result
is robust across all the data-generating processes (DGPs) considered in our experiment.
Additionally, the BLT test and the co-exceedance rule of the LM test both have empirical
sizes close to the nominal size in all DGPs. The empirical size of the JT test is mixed, under-
or over-sized in different DGPs, and the co-exceedance rule of the LM and BND test is
significantly undersized. Interestingly, adding idiosyncratic jumps into the DGPs increases
the size of the JT test and lowers the size of the other three tests.

The rest of this paper is organized as follows. Section 2 outlines the setup and sum-
marizes the co-jump tests examined in the paper. Section 3 discusses the Monte Carlo
experiments. Section 4 outlines all volatility forecasting models used in the sequel. Section 5
summarizes the setup of our forecasting experiments. Section 6 briefly discusses the data
used in our analysis, and Section 7 summarizes our key empirical findings. Concluding
remarks are contained in Section 9.

2. Co-Jump Identification
2.1. Setup

Let Pt be the log price of an asset at time t. We assume Pt follows an Itô semimartingale:

Pt = P0 +
∫ t

0
bsds +

∫ t

0
σsdWs + Jt (1)

In the above equation, both bs and σs are adapted, càdlàg, and locally bounded. Ws is
a standard Brownian motion and Jt is a compound Poisson process (CPP):

Jt =
Nt

∑
i=1

Yi (2)

where Nt is a Poisson process, representing the number of jumps in the interval [0, t]. The
jump magnitudes Yi’s are iid random variables.

Consider a finite time horizon [0, t] that contains n high-frequency observations of the
log price process. A typical time horizon is one day. Let ∆n = t/n be the sampling frequency.
The intraday return at the equidistant interval is [(i− 1)∆n, i∆n] is ri = Pi∆n − P(i−1)∆n .

In the high-frequency literature, it is widely recognized that realized volatility (RV)2 is
a consistent estimator of quadratic variation, namely:

RVt =
n

∑
i=1

r2
i

u.c.p.−→
∫ t

0
σ2

s ds + ∑
s≤T

(∆Ps)
2 = QVt = IVt + JVt, (3)
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where u.c.p. denotes convergence in probability, uniformly in time. The integrated volatil-
ity (IVt =

∫ t
0 σ2

s ds) measures the contribution of the continuous component to the total
quadratic variation. The jump variation JVt = ∑s≤T(∆Ps)2 measures the contribution from
the discontinuous (jump) component.

There are many estimators of IV. For example, Barndorff-Nielsen and Shephard (2004)
propose a bipower variation estimation BPVt to estimate integrated volatility. Namely,
define the standardized realized bipower variation as:

BPVt = (µ1)
−2

n

∑
i=2
|ri||ri−1|, (4)

where µ1 = E(|Z|) =
√

2 Γ(1)/Γ(1/2) =
√

2/π, where Z is a standard normal random
variable and Γ(·) denotes the gamma function.

2.2. Co-Jump Tests

In this section, we briefly summarize the co-jump testing methods used in the sequel.

2.2.1. BLT Co-Jump Test

Bollerslev et al. (2008) proposed a BLT test to detect co-jumps in a large ensemble
of stocks. They developed a theoretical foundation that showed how only co-jumps (not
idiosyncratic jumps) could be detected in a large equal-weighted index. Let M denote the
total number of assets under consideration. The BLT mean cross-product test statistic is
defined as:

mcpt,i =
2

M(M− 1)

M−1

∑
j=1

M

∑
l=j+1

rj
ir

l
i , i = 1, · · · , n and t = 1, · · · , T, (5)

where rj
i = Pj

i∆n
− Pj

(i−1)∆n
for j = 1, · · · , M.

The mcp statistic has a nonzero means; the corresponding studentized test statistic is:

zmcp,t,i =
mcpt,i −mcpt

smcp,t
, for i = 1, · · · , n and t = 1, · · · , T. (6)

where

mcpt =
1
n

mcpt =
1
n

n

∑
i=1

mcpt,i, (7)

smcp,t =

√
1
n

n

∑
i=1

(mcpt,i −mcpt)2. (8)

The critical value under the null is calculated by bootstrapping the test statistics zmcp,t,i
using Monte Carlo simulations.

2.2.2. JT Co-Jump Test

Jacod and Todorov (2009) constructed two test statistics to identify co-jumps under
two different null hypotheses of joint and disjoint jumps. The test statistics were proposed
for detecting co-jumps in a bivariate process. Co-jumps among multivariate processes can
be detected from the combination of bivariate processes. The test statistics of the common
jump Φ(j)

n and disjoint jump Φ(d)
n are defined as:
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Φ(j)
n =

V( f , k∆n)t

V( f , ∆n)t
and Φ(d)

n =
V( f , ∆n)t√

V(g1, ∆n)tV(g2, ∆n)t
, (9)

where k is an integer greater than 1 and V( f , k∆n)t is defined as:

V( f , k∆n)t =
[t/k∆n ]

∑
i=1

f (Pi∆n − P(i−1)∆n). (10)

The functions f (x), g1(x), and g2(x) used in the cited paper are given as follows:

f (x) = (x1x2)
2, g1(x) = (x1)

4, g2(x) = (x2)
4. (11)

They show that the test statistics for the null hypothesis of disjoint jumps Φ(d)
n converge

in probability to 0 on Ω(d)
T and the null hypothesis with common jumps Φ(j)

n converges in

probability to 1 on Ω(j)
T (refer to Theorem 3.1 therein). Here, Ω(j)

T and Ω(d)
T are defined as:

Ω(j)
T = {ω: on [0, t] the process r1

i r2
i is not identically 0} , (12)

Ω(d)
T = {ω: on [0, t] the processes r1

i and r2
i are

not identically 0, but the process r1
i r2

i is}.
(13)

The authors constructed critical regions of the two statistics as:

C(j)
n = {|Φ(j)

n − 1| ≥ c(j)
n } and C(d)

n = {Φ(d)
n ≥ c(d)n }, (14)

where c(j)
n = V̂(j)

n /
√

α and c(d)n = V̂
′(d)
n /α with significance level α. The term V̂(j)

n is defined
as:

V̂(j)
n =

√
∆n(k− 1)F̂′nt

V( f , ∆n)t
(15)

with F̂
′n
t given by:

F̂
′n
t =

2
kn∆n

[t/∆n ]−kn−1

∑
i=1+kn

∑
m∈In(i)

(r1
i )

2(r2
i )

2 × (r1
i r2

m + r1
mr2

i )
21{|ri |>α∆ω

n ,|rm |≤α∆ω
n }, (16)

where In(i) = In,−(i) ∪ In,+(i) and In,−(i) = {i − kn, i − kn + 1, · · · , i − 1} if i > kn and
In,+(i) = {i + 2, i + 3, · · · , i + kn + 1}. The term V̂(′d)

n is defined as:

V̂(′d)
n =

∆n F̂n
t + Â

′n
T

V(g1, ∆n)tV(g2, ∆n)t
(17)

where

F̂n
t =

2
kn∆n

[t/∆n ]−kn−1

∑
i=1+kn

∑
m∈In(i)

((r1
i )

2(r2
m)

2 + (r1
m)

2(r2
i )

2)× 1{|ri |>α∆ω
n ,|rm |≤α∆ω

n } (18)

Â
′n
t =

1
∆n

t/∆n

∑
i=1

f (ri)1{|ri |≤α∆ω
n }. (19)

The local window kn = 1/
√

∆n and the truncation level of α∆ω
n = 0.03× ∆0.49

n
3.
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2.2.3. Univariate Jump Co-Exceedance Rule

Gilder et al. (2014) proposed a co-exceedance-based co-jump detection method by
applying univariate jump tests to individual stocks to identify co-jumps. They selected
three univariate jump tests developed by Barndorff-Nielsen and Shephard (2006), Lee
and Mykland (2007) and Andersen et al. (2010), respectively. The idea was to find the
intersection between ABD jump test results and BNS jump test results (ABD∩BNS), the
intersection between ABD jump test results and LM jump test results (ABD∩LM), the
intersection between BNS jump test results and LM jump test results (BNS∩LM), and
the intersection among three jump tests results (ABD∩LM∩BNS), and retain only the
intersection of the identified jumps to avoid spurious test results. Co-jumps are detected if
more than one univariate process has jumps at the same time interval.

In the Lee and Mykland (2007) jump test, they used the ratio of realized returns to the
estimated instantaneous volatility and constructed a nonparametric jump test to identify
the exact timings of the jumps at the intraday level. The test statistics to identify the jump
during interval (t + l/n, t + (l + 1)/n) is:

L(t+(l+1)/n) =
Xt+(l+1)/n − Xt+l/n

σ̂t+(l+1)/n
, (20)

where

σ̂2
t+(l+1)/n ≡

1
K− 2

l−2

∑
i=l−K+1

|Xt+(i+1)/n − Xt+i/n || Xt+i/n − Xt+(i−1)/n|. (21)

Here, K is the window size of a local movement of the process. It is also shown that:

maxl∈Ān
|L(t+(l+1)/n)| − Cn

Sn
→ ε, as ∆n → 0, (22)

where ε has a cumulative distribution function P(ε ≤ x) = exp(−e−x),

Cn =
(2 log n)1/2

c
− log π + log(log n)

2c(2 log n)1/2 and Sn =
1

c(2 log n)1/2 (23)

c ≈ 0.7979 and Ān is the set of l ∈ {0, 1, · · · , n}, so that there are no jumps in (t + l/n, t +
(l + 1)/n].

Barndorff-Nielsen and Shephard (2006) developed a non-parametric (Hausman 1978)
type test using the difference between the realized quadratic variation and realized bipower
variation. Realized quadratic variation was estimated using realized volatility. The adjusted
jump ratio test statistics can be defined as,

BNS =
M1/2√

ϑ max(1, QPV
(µ2

1BPV)2 )
(1− BPV

RV
)

d−→ N(0, 1) (24)

where RV and BPV are the same as in (3) and (4), ϑ = π2/4 + π− 5 ≈ 0.6090. The realized
quad-power variation QPV is used to estimate integrated quarticity (

∫ t
0 σ4

s ds) and can be
given as:

QPV =
1

∆n

n

∑
j=4
|∆jX||∆j−1X||∆j−2X||∆j−3X| P−→ µ4

1

∫ t

0
σ4

s ds. (25)



J. Risk Financial Manag. 2022, 15, 334 7 of 21

The authors show that the null hypothesis of no jumps is rejected if the test statistic
BNS is in excess of the critical value Φα, where α is the test significance level, leading to a
conclusion that there are jumps during the tested time interval.

3. Monte Carlo Experiments

The co-jump tests discussed above are widely used in the empirical literature to
identify co-jumps among asset prices. In this section, we carry out a series of Monte Carlo
experiments to evaluate the finite sample properties of the above co-jump tests: (i) BLT
co-jump test; (ii) JT co-jump test; (iii) co-exceedance rule using the LM jump test; and (iv)
the co-exceedance rule using the intersection of the LM test and BNS test. It is possible
that both co-jumps and idiosyncratic jumps are present in the same period. Hence, it
is important to check which test has the best performance in identifying co-jumps from
idiosyncratic jumps.

We generate log prices for M = 10 assets using a Milstein discretion scheme from the
following data-generating process (DGP):

dP(i)
t = µdt +

√
V(i)

t dW(i)
1,t + dCJ(i)t + dI J(i)t , (26)

dV(i)
t = κv(θv −V(i)

t )dt + ζ

√
V(i)

t dW(i)
2,t , (27)

where W(i)
1,t and W(i)

2,t are two standard Brownian motions with correlation ρ, where ρ =

{0,−0.5}. The co-jump and idiosyncratic jump are denoted by CJ(i)t and I J(i)t , respectively.

The jump component J(i)t (the sum of CJ(i)t and I J(i)t ) are simulated as compound Poisson
processes Nt with intensity λi:

J(i)t =
Nt

∑
j=1

Yj, (28)

where Yj’s are iid normal, which characterizes the jump size. Under the null hypothesis,
we first simulate DGPs without jumps as the first scenario. Then, we add idiosyncratic
jumps I J(i)t onto the sample paths as the second scenario of the null hypothesis. Under

the alternative, we add co-jumps CJ(i)t to the null DGPs. When adding co-jumps to the

null DGPs, we set the number of co-jumps CJ(i)t among 10 assets equal to m = 3, which
is in line with what we find in real data4. Table 1 shows the parameter settings in the
Monte Carlo experiments. We follow the parameter settings from (Huang and Tauchen
2005; Aït-Sahalia et al. 2009; Corradi et al. 2018). The jump intensity λ is set to be either
0.1 or 0.2. The sampling frequency is ∆n = 1

78 , which is consistent with 5-min sampling
frequencies. Table 2 shows details of the data generating processes. In all experiments, we
performed 1000 Monte Carlo replications.

Table 1. Monte Carlo experiments—parameter settings *.

Jump Intensity λ =
{

0.1, 0.2
}

Leverage Effect ρ =
{

0,−0.5
}

Jump Distribution Jt
i.i.d∼ N(0, σ) , where σ =

{
0.3, 0.4

}
Sampling Frequency ∆n =

{ 1
78
}

Other Parameters µ, κv, θv, ζ, N =
{

0.05, 5, 0.0144, 0.5, 10
}

* Notes: Entries in this table show the parameter settings in Equations (26) and (27) in the Monte Carlo experiments.
N is the number of simulated log prices of assets in the data generating process(es) (DGP). Moreover, 1

78 indicates
the 5-min sampling frequency. See Section 3 for complete details.
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Table 2. Monte Carlo experiments—data generating process *.

λI J λCJ σI J σCJ ρ ∆n µ κv θv ζ N

DGP1 0 1
78 0.05 5 0.0144 0.5 10

DGP2 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP3 0.1 0.3 0 1
78 0.05 5 0.0144 0.5 10

DGP4 0.2 0.3 0 1
78 0.05 5 0.0144 0.5 10

DGP5 0.1 0.4 0 1
78 0.05 5 0.0144 0.5 10

DGP6 0.2 0.4 0 1
78 0.05 5 0.0144 0.5 10

DGP7 0.1 0.3 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP8 0.2 0.3 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP9 0.1 0.4 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP10 0.2 0.4 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP11 0.1 0.3 0 1
78 0.05 5 0.0144 0.5 10

DGP12 0.2 0.3 0 1
78 0.05 5 0.0144 0.5 10

DGP13 0.1 0.4 0 1
78 0.05 5 0.0144 0.5 10

DGP14 0.2 0.4 0 1
78 0.05 5 0.0144 0.5 10

DGP15 0.1 0.3 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP16 0.2 0.3 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP17 0.1 0.4 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP18 0.2 0.4 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP19 0.1 0.1 0.3 0.3 0 1
78 0.05 5 0.0144 0.5 10

DGP20 0.2 0.2 0.3 0.3 0 1
78 0.05 5 0.0144 0.5 10

DGP21 0.1 0.1 0.4 0.4 0 1
78 0.05 5 0.0144 0.5 10

DGP22 0.2 0.2 0.4 0.4 0 1
78 0.05 5 0.0144 0.5 10

DGP23 0.1 0.1 0.3 0.3 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP24 0.2 0.2 0.3 0.3 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP25 0.1 0.1 0.4 0.4 −0.5 1
78 0.05 5 0.0144 0.5 10

DGP26 0.2 0.2 0.4 0.4 −0.5 1
78 0.05 5 0.0144 0.5 10

* Notes: DGPs 1–2 are continuous processes. DGPs 3–10 are continuous processes plus idiosyncratic jumps
characterized by various jump size densities. DGPs 11–18 are continuous processes plus co-jumps characterized
by various jump size densities. DGPs 19–26 are continuous processes plus co-jumps and idiosyncratic jumps
characterized by various jump size densities. λCJ is the co-jump intensity and λI J is the idiosyncratic jump
intensity. ρ is the leverage effect. See Section 3 for complete details.

The co-exceedance rule using the LM jump test and the intersection of the LM test and
BNS test are implemented using the following approach5,

M

∑
i=1

1{Jump(i)s > 0}
{
≥ 2, co-jump
≤ 1, no co-jump

(29)

where 1{Jump(i)s > 0} is an indicator function equals 1 when a jump is detected in asset
i during the intraday interval that contains time s, and takes value 0 when no jump
is detected.

Since the JT test is a bivariate co-jump test, we use the following rule to detect co-jumps:

∑
1≤i<j≤M

1{Cojump(i,j)s > 0}
{
≥ 1, co-jump
= 0, no co-jump

(30)

where 1{Cojump(i,j)s > 0} is an indicator function equals 1 when a co-jump is identified
between asset i and asset j at time s. We use the test statistics Φ(d)

n in the JT co-jump test to
identify co-jumps.

The results are reported in Tables 3–6, where the significance level is 5%. Table 3
contains the empirical sizes of the co-jump tests when the underlying process is continuous
(i.e., DGPs 1–2). At the 5% significance level, the range of the empirical size for the BLT test
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is (0.0687, 0.0718); for the JT test, it is (0.0143, 0.0220); for the co-exceedance rule of the LM
test, it is (0.0426, 0.0435); and for the co-exceedance rule of the intersection of the LM and
BNS tests, it is (0.0014,0.0010). Hence, the BLT test and co-exceedance rule of the JT test are
close to the nominal sizes of all DGPs. The JT test is undersized and the co-exceedance rule
of the LM–BNS test is far below the nominal size.

Table 3. Empirical sizes of co-jump tests under continuous processes *.

Case BLT JT LM LM–BNS

DGP1 0.0687 0.0220 0.0426 0.0014
DGP2 0.0718 0.0143 0.0435 0.0010

* Notes: Entries are rejection frequencies based on applications of the BLT co-jump test, JT co-jump tests, the
co-exceedance rule of the LM test, and the co-exceedance rule of the LM–BNS test. Results for the 0.05 nominal
size are reported. There are 1000 Monte Carlo replications. See Sections 2.2 and 3 for complete details.

Table 4 summarizes the empirical sizes of the co-jump tests when there are only
idiosyncratic jumps (i.e., DGPs 3–10). Adding idiosyncratic jumps significantly increases
the size of the JT test. For example, the size increases from 0.0143 to 0.1771 at a 5%
significance level in DGPs 2 and 7, and these results with other DGPs are quite similar.
For the BLT test, the co-exceedance rule of the LM test and the co-exceedance rule of the
LM–BNS test, adding idiosyncratic jumps, slightly lower its size. Similarly, the BLT test
and co-exceedance rule of the JT test are close to the nominal size of all DGPs. The JT test
is significantly oversized and the co-exceedance rule of the LM–BNS test is far below the
nominal size.

Table 4. Empirical sizes of co-jump tests under Monte Carlo simulations with idiosyncratic jumps *.

Case BLT JT LM LM–BNS

DGP3 0.0565 0.1892 0.0478 0.0015
DGP4 0.0506 0.3751 0.0520 0.0022
DGP5 0.0541 0.2486 0.0480 0.0017
DGP6 0.0476 0.4510 0.0523 0.0028
DGP7 0.0554 0.1771 0.0466 0.0019
DGP8 0.0480 0.3982 0.0512 0.0027
DGP9 0.0526 0.2178 0.0468 0.0022

DGP10 0.0452 0.4543 0.0515 0.0034
* Notes: see notes in Table 3.

Table 5 shows the empirical power of the co-jump tests when there are no idiosyncratic
jumps. The JT test, the BLT test, and the co-exceedance rule of the LM test have significantly
larger powers compared to the co-exceedance rule of the intersection of the LM–BNS test.
As noted in the table, at the 5% significance level, the range of the empirical power of the
BLT test is (0.9167, 0.9362), and the JT test is (0.9451, 0.9891), while the co-exceedance rule
of the LM test is (0.9362, 0.9722), and the intersection of the LM–BNS test is (0.1702, 0.3409).
Jump intensity and jump size have positive effects on power in most cases. For example, in
DGPs 11 and 13, as the co-jump size σCJ increases from 0.3 to 0.4, the empirical power of
the BLT co-jump test increases from 0.9255 to 0.9362, the co-exceedance rule of the LM test
increases from 0.9362 to 0.9521, the co-exceedance rule of the intersection of the LM–BNS
test increases from 0.1702 to 0.2606, and the JT test increases from 0.9451 to 0.9670.
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Table 5. Empirical power of co-jump tests under Monte Carlo simulations with co-jumps *.

Case BLT JT LM LM–BNS

DGP11 0.9255 0.9451 0.9362 0.1702
DGP12 0.9167 0.9836 0.9495 0.2121
DGP13 0.9362 0.9670 0.9521 0.2606
DGP14 0.9242 0.9891 0.9697 0.3409
DGP15 0.9202 0.9451 0.9415 0.2340
DGP16 0.9242 0.9836 0.9672 0.2020
DGP17 0.9309 0.9560 0.9628 0.3085
DGP18 0.9293 0.9891 0.9722 0.3409

* Notes: see notes in Table 3.

Table 6 summarizes the empirical power of the co-jump tests when there are also
idiosyncratic jumps. Similarly, the JT co-jump test, the BLT test, and the co-exceedance
rule of the LM test have significantly larger powers than the co-exceedance rule of the
intersection of the LM and BNS tests. It is also worth noting that adding idiosyncratic
jumps lowers the empirical power of the co-jump tests, particularly for the BLT test and the
co-exceedance rule of the LM test. The jump size impacts power positively for all co-jump
tests. The jump intensity does not impact the power unanimously. For example, the jump
intensity has negative effects on power in the BLT test, LM test, and LM–BNS, but it has
positive effects on the power of the JT test. We have different results on the effects of jump
intensity because when jump intensity increases, it increases both the co-jump intensity
and idiosyncratic jump intensity.

Table 6. Empirical power of co-jump tests under Monte Carlo simulations with co-jumps and
idiosyncratic jumps *.

Case BLT JT LM LM–BNS

DGP19 0.9126 0.9394 0.9029 0.2087
DGP20 0.8456 0.9798 0.9332 0.2166
DGP21 0.9175 0.9697 0.9126 0.3155
DGP22 0.8687 0.9798 0.9516 0.3433
DGP23 0.8932 0.9596 0.9223 0.2524
DGP24 0.8687 0.9747 0.9424 0.2097
DGP25 0.9126 0.9697 0.9515 0.3350
DGP26 0.8825 0.9798 0.9516 0.3295

* Notes: See notes in Table 3.

Overall, the BLT test, the JT test, and the co-exceedance rule of the LM test all have
good testing power, except for the co-exceedance rule of the LM–BNS test. Additionally,
the BLT test and the co-exceedance rule of the LM test have empirical sizes close to the
nominal sizes in all DGPs, while the JT test is mixed, under- or over-sized in different DGPs,
and the co-exceedance rule of the LM–BNS test is significantly undersized in all DGPs. The
co-exceedance rule of the LM test has good testing power and is more conservative under
the null. Hence, this test is very unlikely to yield the false discovery of co-jumps. Therefore,
we used this test in the following.

4. Forecasting Methods
4.1. Forecasting Models

In this section, we summarize all models we used in predicting sector-level equity
volatility. With the recent availability of high-frequency financial data, the HAR-type
models are now widely used in the literature for forecasting the time-varying return
variance. The HAR-RV model, first proposed by Corsi (2009), is based on the idea of
the HARCH model and the heterogeneous market hypothesis developed by Müller et al.
(1997), in which the authors believe that different types of traders react to the market on
different horizons and, consequently, affect the market differently. So the HAR-RV model
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incorporates different kinds of market volatilities over different time horizons to forecast
volatility. One simple version of the HAR-RV model is:

RVt+h = β0 + βdRVt + βwRVt−5,t + βmRVt−22,t + εt+h, (31)

where RVt+h is the realized volatility defined in Equation (3) at day t + h. The multi-period
normalized realized measures for realized volatility RVt−h,t are defined as the average of
the corresponding one-period measures. Namely,

RVt−h,t = h−1[RVt−h+1 + RVt−h+2 + · · ·+ RVt]. (32)

Built on the HAR-RV model, Andersen et al. (2007) further separated jumps from
the continuous part and developed a new HAR-RV-CJ prediction model that contained
the jump component, the continuous component, and the lag terms over different time
horizons. More specifically, the HAR-RV-CJ model is given by:

RVt,t+h = β0 + βcdCt + βcwCt−5,t + βcmCt−22,t + β jd Jt + β jw Jt−5,t + β jm Jt−22,t + εt+h,
(33)

where Ct is the variation of the continuous component on day t estimated by BPV defined
in Equation (4) and Jt is the corresponding jump variation estimated by

Jt = RVt − BPVt (34)

Since the sampling interval in the empirical analysis is finite (∆n > 0), the above-
defined Jt can be negative in some cases. Andersen et al. (2007) suggested excluding the
negative values of the estimates and truncating the jump measurements at 0. The jump
component variation is calculated as:

Jt = max[RVt − BPVt, 0] (35)

The regressors Jt−h,t and Ct−h,t are defined in the same way as RVt−h,t above.
In the sequel, we estimate various HAR-RV-J models that incorporate co-jumps (CJt)

and idiosyncratic jumps (I Jt) and analyze the predictive content for co-jumps and idiosyn-
cratic jumps in the forecasting volatility.
Specification 1: HAR-RV-C model (benchmark model):

log RVt+1 = β0 + βcd log Ct + βcw log Ct−5,t + βcm log Ct−22,t + εt+1. (36)

Specification 2: HAR-RV-C-CJ model with co-jumps (CJt):

log RVt+1 = β0 + βcd log Ct + βcw log Ct−5,t + βcm log Ct−22,t + βcjd log CJt

+ βcjw log CJt−5,t + βcjm log CJt−22,t + εt+1.
(37)

Specification 3: HAR-RV-C-IJ model with idiosyncratic jumps (I Jt):

log RVt+1 = β0 + βcd log Ct + βcw log Ct−5,t + βcm log Ct−22,t + βijd log I Jt

+ βijw log I Jt−5,t + βijm log I Jt−22,t + εt+1.
(38)

Specification 4: HAR-RV-C-CJ-IJ model with co-jumps (CJt) and idiosyncratic jumps (I Jt):

log RVt+1 = β0 + βcd log Ct + βcw log Ct−5,t + βcm log Ct−22,t + βcjd log CJt

+ βcjw log CJt−5,t + βcjm log CJt−22,t + βijd log I Jt

+ βijw log I Jt−5,t + βijm log I Jt−22,t + εt+1

(39)
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The regressors include the daily, weekly, and monthly lag terms. All of the model
specifications are summarized in Table 7.

Table 7. Brief descriptions of forecasting models *.

Model Description

HAR-RV-C Future RV depends on the lags of the continuous component of the RV.

HAR-RV-C-CJ Future RV depends on the lags of the continuous component of RV and
the co-jump variation.

HAR-RV-C-IJ Future RV depends on the lags of the continuous component of the RV
and the idiosyncratic jump variation.

HAR-RV-C-CJ-IJ Future RV depends on the lags of the continuous component of RV,
co-jump variation, and idiosyncratic jump variation.

* Notes: This table reports the models in the forecasting experiments. The benchmark model is the HAR-RV-C
model. For complete details, refer to Section 4.

4.2. Co-Jump and Idiosyncratic Jump Variations

The co-exceedance rule of the LM test is utilized to identify co-jumps and idiosyncratic
jumps among M assets, as defined in (29). The co-jump variation is measured using the
power transformation of the instantaneous return:6

CJt =
n

∑
s=1

r2
s ∗ ICJ

s (40)

where ICJ
s is a co-jump indicator for the target asset at intraday interval s on day t and rs

is the return over the same interval. The number of observations per day is n = 78. The
idiosyncratic jump variation is

I Jt =
n

∑
s=1

r2
s ∗ I I J

s (41)

where I I J
s is an idiosyncratic jump indicator for the target asset at the intraday interval s on

day t.
The ratios of co-jump and idiosyncratic jump contributions to the total variations are

calculated as:

ratioCJ =
CJt

RVt
and ratioI J =

I Jt

RVt
. (42)

The proportions of co-jumps and idiosyncratic jumps to the total number of jumps are
defined as:

PorpCJ =
NCJ

NCJ + N I J and PorpI J =
N I J

NCJ + N I J , (43)

where NCJ is the number of co-jumps and N I J is the number of idiosyncratic jumps7. The
frequencies of co-jumps and idiosyncratic jumps are defined as the percentage of days
identified as having co-jumps and idiosyncratic jumps, respectively:

FrequencyCJ =
1
T

T

∑
i=1

1{∑M
s=1 ICJ

s }>0 and FrequencyI J =
1
T

T

∑
i=1

1{∑M
s=1 I I J

s }>0, (44)

where T is the total number of days in the sample.
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5. Setup of the Forecasting Experiment

For the forecasting experiment, we carried out both an in-sample regression analysis
and an out-of-sample forecast analysis. We used a rolling window estimation scheme,
with window size T = 450 (i.e., approximately two years). We obtained sequences of
daily out-of-sample volatility forecasts for the sample period from 13 November 2008 to 31
December 2019, which contained 2801 trading days. The in-sample regression analysis was
also conducted using the same sample periods.

We used in-sample adjusted R2, the mean absolute forecasting error (MAFE), and
out-of-sample R2 to evaluate forecasting results among candidate models.

The out-of-sample R2 is defined as:

out-of-sample R2 = 1− ∑T
t=1(yt − ŷt)2

∑T
t=1(yt − ȳt)2

(45)

where ȳt is the historical average of volatility.
Moreover, we implemented the model confidence set (MCS) test of Hansen et al.

(2011) to compare the forecasting performance amongst candidate models, in which a large
p-value indicates a superior performance. The MCS test has a sequence of statistic tests,
which are utilized to determine the “Superior Set Models” (SSM)8 from a collection of
models, where the null hypothesis of equal predictive ability among candidate models is
not rejected at a certain confidence level. Let djh,i denote the loss difference between the
forecasting model j and h:

djh,i = l(εj
i)− l(εh

i ), j, h = 1, · · · , Q, i = 1, · · · , n, (46)

where ε
j
i is the prediction error in model j at time span i, εh

i is the prediction error in the
other model h, and l() represents the quadratic loss function. The null hypothesis of the
equal predictive ability for a given set of models Q can be given as:

H0,Q : cj,h = 0, for all j, h = 1, 2, · · · , Q, (47)

H1,Q : cj,h 6= 0, for all j, h = 1, 2, · · · , Q, (48)

where cj,h = E(dj,h) is finite- and time-independent. The first test statistic is constructed as:

Tj,h =
d̄j,h√

v̂ar(d̄j,h)
(49)

where d̄j,h = n−1 ∑n
i=1 djh,i and v̂ar(d̄j,h) is the bootstrapped estimate of var(d̄j,h). We

performed a stationary bootstrap procedure of 2000 resamples. In Hansen et al. (2011), the
first test statistics maps naturally into the following test statistic:

TR,Q = max
j,h∈Q

| Tj,h | (50)

where Tj,h is calculated using Equation (49). Since the asymptotic distribution of the test
statistic is nonstandard, the relevant distribution can be estimated with bootstrap methods.
We calculate the p-values for the candidate forecasting models. The MCS test used to obtain
the SSM can be summarized as the following step:

1. Set Q = Q0.
2. Test for the null hypothesis of equal predictive ability among candidate models in Q

with significance level α. If the null hypothesis cannot be rejected, then the set SSM is
the same as the set of all models. Otherwise, determine the worst model in the set Q.

3. Remove the worst model from Q, and proceed to step 2.
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The choice of the worst model to be eliminated in step 2 is determined using an
elimination rule that is consistent with the test statistics defined in Equation (49), which are

eR,Q = arg max
j

{
sup
j∈Q

d̄j,h√
v̂ar(d̄j,h)

}
(51)

6. Data Description

We collected data for nine SPDR exchange-traded funds (ETFs), which were designed
to track nine sectors of the S&P 500 index, including the material sector (XLB), energy sector
(XLE), financial sector (XLF), industrial sector (XLI), technology sector (XLK), consumer sta-
ples sector (XLP), utility sector (XLU), healthcare sector (XLV), and consumer discretionary
sector (XLY). The sources of nine sector ETF intraday observations were from the trade and
quote database (TAQ) through the Wharton research data service (WRDS). Table 8 shows
the details of the forecasting targets. The full sample period was from 3 January 2006 to 31
December 2019 for a total of 3523 trading days. We excluded overnight returns from our
sample. The previous tick method derived from Gençay et al. (2001) was used to filter out
price data. Raw data were cleaned and outliers were removed based on the procedures in
Brownlees and Gallo (2006). We used the 5-min sampling frequency to reduce the effect of
microstructure noise, yielding 78 observations per day in most cases.

Table 8. Target variables in the forecasting experiment *.

Target Name Description Transformation Frequency

XLF Financial Sector SPDR Fund ln(Xt)− ln(Xt−1) Daily
XLK Technology Sector SPDR Fund ln(Xt)− ln(Xt−1) Daily
XLP Consumer Staples Select Sector SPDR Fund ln(Xt)− ln(Xt−1) Daily
XLU Utilities Select Sector SPDR Fund ln(Xt)− ln(Xt−1) Daily

XLY Consumer Discretionary Select Sector
SPDR Fund ln(Xt)− ln(Xt−1) Daily

* Notes: This table reports the prediction targets. Data transformations used in the forecasting experiments are
presented in the third column of the table. See Section 6 for further details.

7. Empirical Findings

In this section, we discuss the main empirical findings. We begin by discussing the
results from identifying co-jumps and idiosyncratic jumps among nine sector ETFs in the
S&P 500 market. The first sense of the prevalence of co-jumps and idiosyncratic jumps can
be formulated by inspecting Table 9 and Figures 1–3. Then we turn to the one-day-ahead
predictive performance of the forecasting models outlined in Section 4. We report the model
confidence set results (Table 10), in-sample adjusted R2 results (Table 11), out-of-sample
R2 results (Table 12), and additionally, the mean absolute forecasting error (MAFE) results
(Table 13). Our main empirical findings are summarized as follows.

First, both co-jumps and idiosyncratic jumps occurred frequently from January 2007
to December 2019, especially during significant market turmoil, such as the 2008 financial
crisis and the 2011 European debt crisis. Table 9 shows the summary statistics for co-jumps
and idiosyncratic jumps. While both types of jumps occurred frequently from January 2008
to December 2019, the frequency of co-jumps was much higher. Moreover, the descriptive
statistics also suggested that the magnitude (including both the upside jump and downside
jump) of the co-jumps was typically larger than that of the idiosyncratic jumps. All these
results are in line with the fact that there were two major crises in the sample period, during
which the systematic jump risk would be more prevalent than the idiosyncratic jump risk.
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Figure 1. Number of co-jumps under different scenarios: Figure 1 shows the number of co-jumps
identified under different scenarios, i.e., across nine sectors in the S&P 500 market from January 2007
to December 2019. The nine sectors are materials, energy, financial, industrial, technology, consumer
staples, utility, healthcare, and consumer discretionary. The co-exceedance rule of the LM test is
utilized to detect co-jumps among sectors. The shaded area in the figure denotes the financial crisis
period from December 2007 to June 2009. See Sections 4 and 7 for further details.

Figure 2. Number of sector-level idiosyncratic jumps: see notes in Figure 1. Figure 2 shows the
number of idiosyncratic jumps in nine sectors in the S&P 500 market from January 2007 to December
2019. See Sections 4 and 7 for further details.
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Figure 3. Number of sector-level co-jumps: see notes for Figure 1. Figure 3 shows the number of
co-jumps in nine sectors in the S&P 500 market from January 2007 to December 2019. See Sections 4
and 7 for further details.

Table 9. Descriptive statistics for co-jumps and idiosyncratic jumps (2007:1–2019:12) *.

Sector XLB XLE XLF XLI XLK XLP XLU XLV XLY

Co-jump

Frequency (%) 30.10% 24.45% 25.31% 30.78% 24.48% 32.73% 29.55% 29.49% 29.03%
Prop. (%) 79.36% 70.08% 72.79% 87.46% 83.52% 79.76% 64.37% 78.23% 86.09%

upside jump
mean (%) 0.63% 0.78% 0.72% 0.56% 0.57% 0.43% 0.61% 0.49% 0.55%

downside
jump mean

(%)
−0.61% −0.76% −0.70% −0.54% −0.53% −0.43% −0.60% −0.47% −0.54%

St. dev. 0.0074 0.0090 0.0090 0.0064 0.0064 0.0052 0.0072 0.0055 0.0067
Ratio of JV to

RV (%) 27.96% 22.71% 23.50% 28.58% 22.74% 30.40% 27.45% 27.39% 26.97%

Idiosyncratic jump

Frequency (%) 15.01% 17.42% 14.82% 10.39% 10.36% 15.19% 24.05% 16.56% 10.36%
Prop. (%) 20.64% 29.92% 27.21% 12.54% 16.48% 20.24% 35.63% 21.77% 13.91%

upside jump
mean (%) 0.50% 0.59% 0.67% 0.42% 0.38% 0.31% 0.43% 0.39% 0.40%

downside
jump mean

(%)
−0.51% −0.59% −0.62% −0.43% −0.39% −0.31% −0.45% −0.40% −0.38%

St. dev. 0.0056 0.0064 0.0077 0.0048 0.0042 0.0034 0.0047 0.0043 0.0043
Ratio of JV to

RV (%) 13.94% 16.18% 13.77% 9.65% 9.62% 14.11% 22.34% 15.38% 9.62%

* Notes: This table shows the descriptive statistics for co-jumps and idiosyncratic jumps identified from nine
sector ETFs. The frequency denotes the percentage of days having co-jumps or idiosyncratic jumps. JV is the
jump variation and RV is the total variation calculated by realized volatility. XLB is the material select sector ETF;
XLE is the energy select sector ETF; XLF is the financial select sector EFT; XLI is the industrial select sector EFT;
XLK is the technology select sector EFT; XLP is the consumer staples select sector EFT; XLU is the utility sector
ETF; XLV is the healthcare sector ETF, and XLY is the consumer discretionary sector ETF. See Sections 5 and 7 for
further details.
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Table 10. Model confidence set test *.

Sector HAR-RV-C HAR-RV-C-CJ HAR-RV-C-IJ HAR-RV-C-CJ-IJ

Forecasting Period: 2008:11–2019:12
XLF 0.6560 * 1.0000 * 0.6560 * 0.6560 *
XLK 0.2165 * 0.4195 * 0.1415 * 1.0000 *
XLP 0.1220 * 0.1220 * 0.0880 1.0000 *
XLU 0.3860 * 0.3860 * 0.2975 * 1.0000 *
XLY 0.7780 * 0.9385 * 0.7780 * 1.0000 *

* Notes: See notes in Table 9. This table reports the model confidence test (MCS) p-values associated with the
MCS test discussed in Section 5. Moreover, the 90% model confidence set members are identified by models
with asterisks.

Table 11. In-sample adjusted R2 *.

Sector HAR-RV-C HAR-RV-C-CJ HAR-RV-C-IJ HAR-RV-C-CJ-IJ

Forecasting Period: 2008:11–2019:12
XLF 0.7761 0.7765 0.7761 0.7768
XLK 0.6748 0.6758 0.6758 0.6763
XLP 0.6430 0.6441 0.6439 0.6443
XLU 0.6157 0.6189 0.6175 0.6200
XLY 0.7458 0.7470 0.7462 0.7470

* Notes: See notes in Table 10. Entries in this table include in-sample adjusted R2. All results are from forecasting
experiments that utilized 5-min frequency data. See Sections 5 and 7 for further details.

Table 12. Out-of-sample R2 *.

Sector HAR-RV-C HAR-RV-C-CJ HAR-RV-C-IJ HAR-RV-C-CJ-IJ

Forecasting Period: 2008:11–2019:12
XLF 0.6765 0.6866 0.6823 0.6823
XLK 0.5680 0.5772 0.5649 0.5817
XLP 0.5567 0.5602 0.5556 0.5696
XLU 0.4927 0.4970 0.4914 0.5047
XLY 0.6804 0.6838 0.6802 0.6841

* Notes: See notes in Table 10. This table reports the out-of-sample R2 for all forecasting experiments.

Table 13. Mean absolute forecasting error *.

Sector HAR-RV-C HAR-RV-C-CJ HAR-RV-C-IJ HAR-RV-C-CJ-IJ

Forecasting Period: 2008:11–2019:12
XLF 0.2293 0.2251 0.2276 0.2267
XLK 0.2371 0.2348 0.2360 0.2320
XLP 0.2062 0.2056 0.2063 0.2031
XLU 0.2070 0.2061 0.2069 0.2042
XLY 0.2225 0.2211 0.2214 0.2205

* Notes: See notes in Table 10. This table reports the mean absolute forecasting errors (MAFEs) for all forecasting
experiments.

Second, co-jumps occurred more frequently than idiosyncratic jumps. Figure 1 shows
the number of co-jumps under different scenarios, i.e., across a different number of sectors
from January 2007 to December 2019. Not surprisingly, co-jumps detected under scenarios
with fewer sectors occurred more frequently than co-jumps identified under scenarios
with a larger number of sectors. Figures 2 and 3 depict the numbers of co-jumps and
idiosyncratic jumps, respectively. The results in Figures 2 and 3 indicate that co-jumps
and idiosyncratic jumps were more densely populated during significant market turmoils,
including the 2008 financial crisis, the 2011 European debt crisis, the 2015–2016 stock market
selloff, and the stock market dip in December 2018–January 2019. This suggested higher
levels of systematic jump risk and idiosyncratic jump risk during those market downturns.
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Moreover, as expected, the financial sector had more idiosyncratic jumps during the 2008
financial crisis compared with other sectors, which is consistent with the fact that this crisis
was mainly triggered by the collapse of the financial sector.

Third, co-jumps and idiosyncratic jumps demonstrate marginal predictive content
for volatility prediction, and this result was robust across different forecasting targets.
The results in the model confidence set test (Table 10), in-sample adjusted R2 (Table 11),
out-of-sample R2 (Table 12), and mean absolute forecasting error (Table 13) indicate that
the HAR-RV-C-CJ-IJ forecasting model, which contains co-jumps and idiosyncratic jumps
variations, outperforms other forecasting models (HAR-RV-C, HAR-RV-C-CJ, and HAR-RV-
C-IJ) in most scenarios. Additionally, when comparing the HAR-RV-C benchmark model
with HAR-RV-C-CJ, it is clear that adding co-jump variations into the model reduces the
forecasting error and improves in-sample adjusted R2 and out-of-sample R2 in most cases.
This suggests both systematic risk and idiosyncratic risk are useful in predicting volatility.

Fourth, the predictive content of co-jumps is higher than that of idiosyncratic jumps.
Evidently, the model with co-jump variations (HAR-RV-C-CJ) represents the majority of
entries with smaller MAFEs and larger out-of-sample R2 and in-sample R2 than the model
with idiosyncratic jump variations (HAR-RV-C-IJ). For example, in Table 13, the HAR-RV-
C-CJ model yields the lowest MAFEs for all sectors, and these MAFEs are comparatively
lower than models using idiosyncratic jump information9. The same finding holds with the
model confidence set testing results in Table 10. Comparing the HAR-RV-C-IJ model with
idiosyncratic jump variations, the HAR-RV-C-CJ model with co-jump variations has larger
p-values in all sectors. In Tables 11 and 12, the HAR-RV-C-CJ model has higher in-sample
R2 and out-of-sample R2 compared with the HAR-RV-C-IJ model. All these results suggest
that systematic risk is more useful than idiosyncratic risk in volatility forecasting.

8. Policy Implications

In this paper, we distinguished jumps in sector-level ETF prices into idiosyncratic
jumps, which represent large-scale price movements that occur mostly within one sector,
and co-jumps, which are defined as large-scale price movements that take place across more
than one sector around the same time. Specifically, idiosyncratic jumps reflect the influence
of events that are mostly confined within one sector, while co-jumps, by the nature of price
co-movements among more than one sector at the same time, capture the impact of events
that can spill over to other sectors, leading to financial risk contagion.

In our empirical experiment, the augmentation of co-jumps leads to improvements
in the forecasting of realized volatility for each of the five S&P 500 sectors. Co-jumps also
demonstrate higher predictive power compared to idiosyncratic jumps and achieve even
better predictive accuracy when combined with idiosyncratic jumps. These results put
co-jumps as a key source of volatility for S&P 500 sectors, aside from within-sector risks
or events that are captured by idiosyncratic jumps. Spillovers from other sectors account
for a significant portion of volatility for each individual market sector, which should be
adequately noticed by researchers and policymakers. Moreover, we also found that co-
jumps occurred two to three times more frequently than idiosyncratic jumps in our sample
period from 2007 to 2019, suggesting within-sector risks or events are more likely to spill
over to other sectors.

For policymakers, it is crucial to be vigilant to within-sector risks or events to prevent
systemic risks to the financial market, given the outsized effects on other sectors and the
frequency of such scenarios. Significant risks or events of one sector could spill over to
other sectors and cause increased volatility, resulting in contagion among different sectors.

9. Concluding Remarks

In this paper, we examined the usefulness of co-jump and idiosyncratic jump variation
measures in forecasting the volatility of sector ETFs. The co-jumps are meant to represent
the systematic risks across multiple assets, sectors, and markets, while the idiosyncratic
jumps capture the idiosyncratic risks in an individual sector. In particular, using 5-min
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return data, we utilized extant jump and co-jump tests to disentangle individual sector
idiosyncratic jumps and multiple sector co-jumps from January 2007 to December 2019.
Perhaps not surprisingly, we found that co-jumps and idiosyncratic jumps occurred more
frequently during the financial market turmoils, such as the 2008 financial crisis and the
2011 European debt crisis, affirming the severity of financial stress during the market tur-
moil. Moreover, we found that co-jumps have larger magnitudes and variations compared
with idiosyncratic jumps, which suggests that systematic risk has a larger impact than
idiosyncratic risk on the financial market. Additionally, we showed (via a series of forecast-
ing experiments that utilized heterogeneous autoregressive (HAR) models) that volatility
forecasting accuracy can be improved when the original HAR forecasting models are aug-
mented by including co-jump and idiosyncratic jump variation measures. We also find that
the predictive content of co-jumps is higher than that of idiosyncratic jumps, suggesting
that systematic risk is more useful than idiosyncratic risk in volatility forecasting.

In addition, we carried out Monte Carlo simulations to examine the relative perfor-
mances of four existing co-jump tests, including the BLT co-jump test by Bollerslev et al.
(2008), the JT co-jump test by Jacod and Todorov (2009), the co-exceedance rule by Gilder
et al. (2014) using the LM test by Lee and Mykland (2007), and the co-exceedance rule using
the intersection of the LM test and BNS tests by Barndorff-Nielsen and Shephard (2006). We
find that the BLT test and the co-exceedance rule of the LM test outperform the JT co-jump
test and co-exceedance rule of the intersection of the LM and BNS tests. The BLT test, the JT
test, and the co-exceedance rule of the LM test all have good testing power, except for the
co-exceedance rule of the LM–BNS test. The BLT test and the co-exceedance rule of the LM
test have empirical sizes close to the nominal sizes in all DGPs, while the JT test is mixed,
under- or over-sized in different DGPs, and the co-exceedance rule of the LM–BNS test is
significantly undersized.
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Notes
1 For literature in this area, see (Barndorff-Nielsen and Shephard 2006; Lee and Mykland 2007; Jiang and Oomen 2008; Aït-Sahalia

et al. 2009; Huang and Tauchen 2005; Mancini 2009; Podolskij and Ziggel 2010; Corradi et al. 2018; Boswijk et al. 2018; Mukherjee
et al. 2020, and the references cited therein).

2 Bandi and Russell (2008) show in the presence of market microstructure noise, realized variance does not identify daily integrated
variance of the frictionless equilibrium. They propose a more general treatment of the effect of market microstructure noise on
realized variance estimates.

3 We follow the parameter settings from Jacod and Todorov (2009).
4 Among 10 assets, co-jumps occur more frequently among a small portion of all assets (e.g., m = 2, 3, 4) than a large portion of all

assets (e.g., m = 5, 6, 7, 8, 9, 10) at each time.
5 Gilder et al. (2014) also implement the same approach.
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6 One approach to measure jump variation is to use the difference between realized volatility and bipower variation, as shown in
Equations (34) and (35). Another approach to examine the jump power variation is formed using power transformation of the
instantaneous return, i.e., | rs |q. Key papers in this area include (Ding et al. 1993; Ding and Granger 1996; Todorov and Tauchen
2010; Barndorff-Nielsen et al. 2008, and the references cited there in).

7 The co-exceedance rule of the LM test is utilized to identify co-jumps and idiosyncratic jumps among assets.
8 The set of models that consists of the best model(s).
9 Overall, the mean absolute forecasting errors in Table 13 are comparatively smaller with respect to results in the relevant literature

(e.g., see Qiu et al. 2019).
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