Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/274696 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Journal of Risk and Financial Management [ISSN:] 1911-8074 [Volume:] 15 [Issue:] 4 [Article No.:] 174 [Year:] 2022 [Pages:] 1-17
Verlag: 
MDPI, Basel
Zusammenfassung: 
The Autoregressive Conditionally Heteroscedastic (ARCH) model is useful for handling volatilities in economical time series phenomena that ARIMA models are unable to handle. The ARCH model has been adopted in many applications that contain time series data such as financial market prices, options, commodity prices and the oil industry. In this paper, we propose an improved post-selection estimation strategy. We investigated and developed some asymptotic properties of the suggested strategies and compared with a benchmark estimator. Furthermore, we conducted a Monte Carlo simulation study to reappraise the relative characteristics of the listed estimators. Our numerical results corroborate with the analytical work of the study. We applied the proposed methods on the S&P500 stock market daily closing prices index to illustrate the usefulness of the developed methodologies.
Schlagwörter: 
ARCH
financial markets
heteroscedastic
pretest
residuals bootstrapping
shrinkage
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
415.82 kB





Publikationen in EconStor sind urheberrechtlich geschützt.