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Abstract: The Autoregressive Conditionally Heteroscedastic (ARCH) model is useful for handling
volatilities in economical time series phenomena that ARIMA models are unable to handle. The
ARCH model has been adopted in many applications that contain time series data such as financial
market prices, options, commodity prices and the oil industry. In this paper, we propose an improved
post-selection estimation strategy. We investigated and developed some asymptotic properties of
the suggested strategies and compared with a benchmark estimator. Furthermore, we conducted
a Monte Carlo simulation study to reappraise the relative characteristics of the listed estimators.
Our numerical results corroborate with the analytical work of the study. We applied the proposed
methods on the S&P500 stock market daily closing prices index to illustrate the usefulness of the
developed methodologies.

Keywords: ARCH; heteroscedastic; financial markets; residuals bootstrapping; pretest; shrinkage

1. Introduction

Modeling and forecasting financial markets are a challenging activities for both in-
vestors and researchers equally. Generally, financial markets are extremely manipulated
by a number of factors such as interest rates, political issues, inflation rates and foreign ex-
change rates. More precisely, the uncertainty of stock markets produces high volatility that
makes the forecasting stage very complex. Volatility forecasting is an important financial
matter, and a precise and accurate volatility forecast is important to traders, investors and
financial analysts. Before the 1980s, researchers were relying on ARIMA models, however,
many financial time series violate the assumptions of the ARIMA model (cf. Brockwell and
Davis 2016; Teräsvirta 2009).

Fortunately, Engle (1982) suggested a stationary non-linear model for economical time
series and introduced the Autoregressive Conditionally Heteroscedastic (ARCH) model,
wherein the conditional variance of a series {yk} changes according to an autoregressive-
type process. Subsequently, Francq and Zakoïan (2012); Grublytė et al. (2017) discussed
the properties of maximum likelihood (MLE) and ordinary least squares (OLS) estimates
of ARCH model parameters. They also investigated the consistency and the asymptotic
normality of the OLS estimator for the ARCH model.

In this article, we are interested in estimating the parameter vector of the ARCH
model when some prior information is available in the form of potential linear restrictions
on the parameters in the parameter space. Practically, an ample number of variables
may be collected and included in the model in an initial stage. However, due to model
complexity (in terms of both interpretation and variation), estimation when a subset of
parameters are under linear restrictions is an important problem in such scenarios. In order
to form such constraints, one requires some prior information about the parameter space
under consideration. One possible source of prior information may be distinguishing which
predictors are of most interest and which are not. An alternative source of prior information,
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specifically uncertain prior information (UPI), might be obtained from previous studies or
expert knowledge that search for some specified patterns.

This paper is organized as follows: Section 2 discuss the recent findings of modeling
time series data using ARCH family models. Section 3 discusses the parameters’ estimation
of the ARCH model. Section 4 is dedicated to introducing the concept of restricted, pretest
and shrinkage estimations of the ARCH model. We derive the asymptotic properties of
the estimators and compare their performances using risk analysis and the mean squared
error in Section 5. We conduct an extensive simulation study for our selected model and
demonstrate the application of the proposed estimators in real-life problems in Section 6.
In Section 7 we give some conclusions.,

2. Literature Review

Various studies have investigated the dilemma of having a financial time series with
high volatility. For instance, Peiris and Peiris (2011) examined the volatility of different
sectors in the Colombo Stock Exchange (CSE) and they applied ARCH/GARCH models
on the monthly time series data of 20 sectors in CSE from 2005 to 2010. They investigated
the impact of macroeconomic factors on volatility. As a result, they found that sixteen out
of twenty sectors in CSE had significant volatility and both ARCH and GARCH terms
on the fitted models for individual sectors were significant. Subsequently, Rathnayaka
et al. (2013) carried out a study to understand the trends and cyclic patterns in CSE in
order to predict future behaviors during seven years since January 2007. They investigated
the causal relationships between market performances and economic growth conditions
related to Sri Lanka. Their results revealed that both microeconomic and macroeconomic
conditions had a direct impact on stock market volatility.

Recently, Wang (2021) utilized GARCH models to analyze Bitcoin’s returns and volatil-
ity. As the GARCH (1,1) model was adopted, the outcome found that the returns and
volatility of Bitcoin have clustering characteristics and returns and the volatility of Bitcoin
is a persistent process; however, its effect gradually reduces with time. To overcome the
limitations of the GARCH (1,1) model, researchers had used TARCH and EGARCH models
to overcome the Leverage Effect of the returns and volatility of Bitcoin.

In practice, regression models usually do not possess a pre-defined UPI; thus, model
selection criterion such as Akaike’s Information Criterion (AIC) Akaike (1974), Bayesian In-
formation Criterion (BIC) Schwarz (1978) or any other technique can be used to construct a
sub-model. Now, it is up to the practitioner to use a sub-model based on fewer predictors
(under-fitted model) or to lean towards a so-called full or over-fitted model. Alternatively,
one may utilize the prior information to test whether some parameters are indeed zero, or
more generally, whether the full vector of parameters are under linear restrictions. To do
this, we will explore the pretesting strategy to improve the post-estimation inference of the
ARCH model. Furthermore, we will implement the use of the Stein-type shrinkage estima-
tor as an alternative to pretesting which shrinks the full model estimator in the direction
of the restrictions. This leads to more efficient estimators when the shrinkage is adaptive.
In the first stage, we select a sub-model by variable selection method or impose a linear
restriction on the parameter space to obtain a submodel. In the second stage, we combine
the sub-model with the full model via a test statistic to improve the estimation efficiency.

Many studies have considered incorporating the UPI in the estimation process to ob-
tain efficient estimators for many statistical models. Recently, Ahmed et al. (2015) proposed
efficient estimators for the regression coefficients of the spatial conditional autoregressive
model under the availability of uncertain auxiliary information about these coefficients. Al-
Momani et al. (2016) proposed shrinkage and penalty estimators for the spatial error model.
Thomson et al. (2016) investigated the relative performances of pretest and shrinkage
estimators for time series following generalized linear models. In all these cases, shrinkage
estimators outperformed classical estimators. Dawod et al. (2018) introduced Bayesian
estimation strategies for jointly monitoring the linear profile. Al-Momani et al. (2019) pro-
posed the use of the pretest, shrinkage and positive shrinkage in estimating the large-scale
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regression parameter vector in the spatial moving average and showed that the positive
shrinkage dominated all other estimators in terms of the relative efficiency of the mean
squared error with respect to the classical maximum likelihood estimator. For more details,
the reader is referred to (Ahmed and Raheem 2012; Emmert-Streib and Dehmer 2019;
Yüzbaşı and Ahmed 2020; Ejaz Ahmed and Yüzbaşı 2016, 2017; Ahmed 2014) for detailed
information on the subject.

3. Estimating ARCH(q) Parameters

Following Francq and Zikoïan (2010), we introduce the ARCH model and consider
the existence of a strictly stationary solution to this model.

√
yt = σtεt, (1)

σ2
t = ω +

q

∑
i=1

αiyt−i, (2)

where εt is the error term, independently and identically distributed with a mean 0 and
variance 1, ω > 0, αi ≥ 0, β j ≥ 0 are unknown constants, ∀ i = 1, . . . , q and j = 1, . . . , p, and
σ2

t = Var(
√

yt|
√

yt−1).
If the ARCH(q) model holds the conditions ω > 0 and ∑

q
i=1 αi < 1, then the uniquely

strictly stationary solution of the model is a weak white noise.
The Ordinary Least Squares (OLS) method will be used to estimate the parameters of

ARCH(q). The OLS method uses the autoregressive representation on the squares of the
observed process and no distributional assumptions are needed for the error term (εt).

The autoregressive AR(q) representation can be obtained by applying some mathe-
matical transformations as follows

ut = yt − σ2
t , (3)

where (ut,Ft) is the sequence containing a martingale difference when E(yt) = σ2
t < ∞,

denoting by Ft the σ-field generated by {ys : s ≤ t}.
By substituting σ2

t from Equation (3) in Equation (2), we obtain

yt = ω +
q

∑
i=1

αiyt−i + ut. (4)

The true parameter will be denoted by θ0, where θ0 = (ω, α1, . . . , αq)′.
Assuming that we observe

√
y1, . . . ,

√
yn, observations of length n from a process {Yt}

and considering
√

y0, . . . ,√y1−q as initial values of the process, these initial values can be
chosen to be zeros. By introducing the vector Yt−1 = (1, yt−1, . . . , yt−q)′, we can rewrite
Equation (4) as a linear system as follows

yt = Y′t−1θ0 + ut, t = 1, . . . n, (5)

and in a matrix format as
Y = Xθ0 + U, (6)

where X′i = (1, yi−1, yi−2, . . . , yi−q).

3.1. Estimation of the Parameter

Assuming X is of full rank, X′X is invertible, and the OLS estimator is given by

θ̂ = argmin||Y− Xθ||2 = (X′X)−1X′Y. (7)

In the forthcoming sections, we will refer to this estimator as unrestricted estimator (UE)
or simply by θ̂

U .
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3.2. Estimation of σ2
0

Assuming that εt follows normal distribution with mean 0 and variance σ2
0 and with

the following conditions:

1. {Yt} is non-anticipative strictly stationary solution of the model in Equation (1).
2. E(yt) < +∞.
3. P(ε2

t = 1) 6= 1.
4. E(y2

t ) < +∞.

Then, σ2
0 is estimated by σ̂2

0 , where

σ̂2
0 =

1
n− q− 1

||Y− Xθ̂||2

=
1

n− q− 1

n

∑
t=1
{yt − ω̂−

q

∑
i=1

α̂iyt−i}2, (8)

where ω̂, α̂1, . . . , α̂q are estimated by Equation (7).

3.3. Estimation of the Information Matrices

Accordingly, Francq and Zikoïan (2010) define A and B as A = E(Yt−1Y′t−1),
B = E(σ4

t Yt−1Y′t−1), , respectively, where

1. A and B have the same length q× q.
2. A and B are invertible.

Then, the estimates of A and B are respectively, given by

Â =
1
n

n

∑
t=1

Yt−1Y′t−1, (9)

B̂ =
1
n

n

∑
t=1

σ̂4
t Yt−1Y′t−1, (10)

where σ̂2
t = Y′t−1θ̂

U . The fourth-order moment of the process εt =
√

yt
σt

is E(ε4
t ); that is also

consistently estimated by µ̂4 = 1
n ∑n

i=1
y2

t
σ̂4

t
.

3.4. Asymptotic Distribution of OLS Estimator

Weiss (1986) was the pioneer who discussed the properties of maximum likelihood
and the least squares estimates of the parameters of both the regression and ARCH models
in parallel with the properties of various tests of the model that are available. He did not
assume that the errors are normally distributed. Rich et al. (1991) introduced another
attractive way to estimate the parameters of the ARCH model without assuming normality
condition. They used the generalized method of moments of Hansen (1982) and showed
that, under fairly weak conditions, the estimator is consistent and asymptotically normally
distributed. Francq and Zikoïan (2004, 2012) proved the consistency and asymptotic
normality of OLS. In this subsection, we list two theorems by Francq and Zikoïan (2010)
about the consistency and asymptotic normality of the OLS estimator for θ.

Theorem 1 (Francq and Zikoïan 2010). Consistency of OLS estimates: If θ̂
U is a sequence of

estimators satisfying the OLS solution for ARCH under the assumptions (1)–(4) in Section 3.2,
then

θ̂
U P−→ θ, σ̂2 P−→ σ2as n −→ ∞, (11)

as θ̂
U is a consistent estimator for θ and where p denotes convergence in probability.
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Theorem 2 (Francq and Zikoïan 2010). Referring to A and B given in Equations (9) and (10),
we have

√
n(θ̂U − θ)

L−→ Nq

(
0, (µ̂4 − 1)A−1BA−1

)
, (12)

where µ̂4 = E(ε4
t ), θ̂

U has asymptotic multivariate normal distribution and L denotes convergence
in distribution.

4. Efficient Estimation Strategies

Usually in the case of θ̂
U , the corresponding model is recognized as a full model

because all parameters are included even though some of them may not have a significant
effect. In this section, we will consider different estimation methods of θ when some UPIs
are available.

4.1. Restricted Estimator

UPI(s) can be formulated as a linear hypothesis in which some of the given parameters
are zeros or there is a restriction on some parameters. Then, the estimated parameters
under such UPI is known as the restricted estimator (RE) and is simply denoted by θ̂

R. The
derivation idea of this estimator is given below:

Suppose that the UPI is formulated in the form of the null hypothesis:

H0 : Rθ = r, (13)

where R is m× q known matrix of rank(m) (m 6 q) (cf. Neter et al. 1996) and r is an m× 1
vector of known constants.

Under the restrictions given in Equation (13), the method uses the Lagrange Multiplier
for each restriction. The method minimizes the following function,

f (X, θ) = (Y− Xθ)′(Y− Xθ)− λ′(r− Rθ), (14)

with respect to θ and λ to obtain the restricted estimator. This estimator is denoted by θ̂
R

and defined by

θ̂
R

= θ̂
U − (X′X)−1R′[R(X′X)−1R′]−1(Rθ− r). (15)

θ̂
R given by Equation (15) is a biased estimator for θ unless the restriction given in

Equation (13) is true.

Theorem 3. The Wald test statistic for testing the hypothesis in Equation (13) is given by

Ln = (Rθ̂
U − r)′[R(Var(θ̂U

))R′]−1(Rθ̂
U − r)

= (Rθ̂
U − r)′[σ2R(X′X)−1R′]−1(Rθ̂

U − r)

=
(Rθ̂

U − r)′[R(X′X)−1R′]−1(Rθ̂
U − r)

σ̂2 , (16)

where σ̂2 is estimated in Equation (8) and it can be shown that Ln
L−→ χ2(m).

We will use α = 0.05 as a level of significance for testing purposes.

4.2. Pretest Estimator

The pretest estimate of θ denoted by θ̂
PT is defined by:

θ̂
PT

=

{
θ̂

U , if Ln > Ln,α,

θ̂
R, if Ln < Ln,α,

(17)



J. Risk Financial Manag. 2022, 15, 174 6 of 17

where Ln is given in Equation (16) and Ln,α is the α-critical value from the distribution. For
more details, the reader can refer to Bancroft (1944); Saleh (2006); Stein (1956).

The pretest estimator is a binary choice function which chooses θ̂
U if the null hypothe-

sis is rejected and θ̂
R if the test fails to reject the null hypothesis.

θ̂
PT can be rewritten in a more attractive way as follows:

θ̂
PT

= θ̂
R I(L 6 L�) + θ̂

U I(L > L�)

= θ̂
U − (θ̂

U − θ̂
R
)I(L 6 L�), (18)

where I(A) is the indicator function of the set A.

4.3. Shrinkage Estimator

The shrinkage estimator of Stein (1956) denoted by θ̂
S is defined by:

θ̂
S
= θ̂

R
+

[
1− m− 2

Ln

]
(θ̂

U − θ̂
R
), m > 3. (19)

It is clear that θ̂
S is no longer a binary choice regardless of whether H0 is rejected. The

shrinkage estimator is a smoothed function of the two choices. θ̂
S does not represent a

convex combination of θ̂
U and θ̂

R and suffers from a phenomenon known as over-shrinkage
which occurs when Ln is smaller than (m− 2) and hence, an unexpected sign for some of
the estimated parameters may be obtained.

4.4. Positive Shrinkage Estimator

A modified version of James–Stein estimator was proposed by Stein (1966) to overcome
the phenomenon of the over-shrinkage estimator known as the positive part shrinkage
estimator. This estimator is denoted by θ̂

S+ and defined as:

θ̂
S+

= θ̂
U
+

[
1− m− 2

Ln

]+
(θ̂

U − θ̂
R
), m > 3, (20)

where Z+ = max(0, Z).

5. Asymptotic Results

In this section, we will study the asymptotic behavior of the proposed estimators
θ̂

U , θ̂
R, θ̂

PT , θ̂
S, θ̂

S+. We will show that the restricted and unrestricted estimators are
jointly asymptotically normal. In addition, we will define and extract expressions for the
asymptotic distributional quadratic bias and the asymptotic quadratic risk of the estimators
relying on the joint normality of θ̂

U and θ̂
R.

5.1. Joint Normality of the Unrestricted and Restricted Estimators

The asymptotic distribution of all the estimators under hypothesis (13) are the same.
Hence, we will study the asymptotic properties under a class of local alternatives that is
given by

H(n) : Rθ = r +
ξ√
n

, (21)

where ξ is a q× 1 fixed vector in Rq. If we set ξ = 0, the local alternative becomes as in (13)
which is a linear hypothesis representing the candidate null subspace.

Some distributional results involving the estimators θ̂
U and θ̂

R are given in the follow-
ing theorem.
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Theorem 4. Under the local alternatives in (21) and the regularity conditions (1)–(4) appearing in
Section 3.2 and assuming that (

(X′q×nXn×q)

n

)
P−→ Cq×q, (22)

as n −→ ∞ and C is a positive definite matrix (p.d.m), then we have

(1) T(1)
n =

√
n(θ̂U − θ)

L−→ T(1) ∼ Nq

(
0, σ2C−1

)
(2) T(2)

n =
√

n(θ̂R − θ)
L−→ T(2) ∼ Nq

(
− δ, σ2[C−1 − A]

)
(3) T(3)

n =
√

n(θ̂U − θ̂
R
)

L−→ T(3) ∼ Nq

(
δ, σ2 A

)
(4)

√
n

[
T(1)

n

Rθ̂
U − r

]
L−→
[

T(1)

Rθ− r

]
∼ N2q

((
0

Rθ− r

)
, σ2
[

C−1 C−1R′

RC−1 RC−1R′

])

(5)

[
T(1)

n

T(3)
n

]
L−→
[

T(1)

T(3)

]
∼ N2q

([
0
δ

]
, σ2
[

C−1 A
A A

])

(6)

[
T(2)

n

T(3)
n

]
L−→
[

T(2)

T(3)

]
∼ N2q

([
−δ
δ

]
, σ2
[

C−1 − A 0
0 A

])
,

where A = C−1R′[RC−1R′]−1RC−1, δ = C−1R′[RC−1R′]−1(Rθ− r).

Proof. The proof of the theorem is located in the Appendix A.

5.2. Asymptotic Bias and Quadratic Bias

Assuming local alternatives in (21), and under the assumptions of Theorem (4),
the asymptotic distributional bias bi(θ̂

∗
) and the quadratic bias Bi(θ̂

∗
) where

θ̂
∗ ∈ {θ̂U , θ̂

R, θ̂
PT , θ̂

S, θ̂
S+} are given in the following theorem.

Theorem 5. Under the assumptions of Theorem (4) and the local alternatives in (21), we have

(1) b1(θ̂
U
) = 0, B1(θ̂

U
) = 0.

(2) b2(θ̂
R
) = −C−1R′[RC−1R′]−1(Rθ− r) = −δ,

B2(θ̂
R
) =

δ́Cδ

σ2 = ∆2.

(3) b3(θ̂
R
) = C−1R′[RC−1R′]−1(Rθ− r)Gm+2(χ

2
m(α); ∆2)

= −δGm+2(χ
2
m(α); ∆2),

B3(θ̂
PT

) = ∆2[Gm+2(χ
2
m(α); ∆2)]2.

(4) b4(θ̂
S
) = −(m− 2)(C−1Ŕ[RC−1R′]−1(Rθ− r))E(χ−2

m+2(∆
2))

= −(m− 2)δE(χ−2
m+2(∆

2)),

B4(θ̂
S
) = (m− 2)2∆2[E(χ−2

m+2(∆
2))]2.

(5) b5(θ̂
S+

) = C−1R′[RC−1R′]−1(Rθ− r)

= −δ{(m− 2)E[[�−2
m (∆2)]−1 I(�−2

m (∆2) ≤ (m− 2))]

−d1E[�−2
m (∆2)]−1 − Gm+2(χ

2
m(α); ∆2)},

B5(θ̂
S+

) = ∆2{(m− 2)E[[�−2
m (∆2)]−1 I(�−2

m (∆2) ≤ (m− 2))]

−(m− 2)E[�−2
m (∆2)]−1 − Gm+2(χ

2
m(α); ∆2)},
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where ∆2 is the non-centrality parameter and Gm(Lα; ∆2) is the non-central chi-square distribution
function with q-degrees of freedom and non-centrality parameter ∆2.

The proof can be found in Appendix B.

5.3. Quadratic Weighted Risks

For any estimator θ̂
∗ of θ, define the quadratic loss as

L(θ̂∗, θ) = n(θ̂∗ − θ)′W(θ̂
∗ − θ),

= tr
{

W(n(θ̂∗ − θ)(θ̂
∗ − θ)′)

}
, (23)

where W is a positive semidefinite matrix of order q × q, and tr(A) is the trace of the
matrix A.

The asymptotic mean squared error matrix M(θ̂
∗
) is given by

M(θ̂
∗
) = E(n(θ̂∗ − θ)′(θ̂

∗ − θ)), (24)

and the asymptotic quadratic risk (AQR) is defined as

R(θ̂∗, W) = E[n(θ̂∗ − θ)′W(θ̂
∗ − θ)]

= tr[WM(θ̂
∗
)]. (25)

The asymptotic weighted quadratic risk expressions are given in the following Theorem.

Theorem 6. Under the assumptions of Theorem 4, we have

(1) R1(θ̂
U , W) = σ2tr(WC−1).

(2) R2(θ̂
R, W) = σ2tr(WA) + δWδ́.

(3) R3(θ̂
PT , W) = σ2tr(WC−1)− σ2tr(WA)Gm+2(χ

2
m(α); ∆2) +

2δWδ́{Gm+2(χ
2
m(α); ∆2)− Gm+4(χ

2
m(α); ∆2)}.

(4) R4(θ̂
S, W) = σ2tr(WC−1)− σ2(m− 2)tr(WA)× {2E[χ−4

m+4(∆
2)]− (m

−2)E[χ−4
m+2(∆

2)]}+ (m− 2)(m + 2)δWδ′E[χ−4
m+4(∆

2)].

(5) R5(θ̂
S+, W) = R4(θ̂

S, W)− σ2(C−1 − A)E[(1− (m− 2)χ−2
m+2(∆

2))2

I(χ−2
m+2(∆

2) < (m− 2)] + δWδ′
{

2E[(1− (m− 2)χ2
m+4(∆

2))

I(χ2
m+4(∆

2) < (m− 2))]− E[(1− (m− 2)χ−2
m+4(∆

2))2

I(χ2
m+4(∆

2) < (m− 2))]
}

.

The proof can be found in Appendix C.

5.4. Risk Analysis of the Estimators

In this section, all estimators will be compared based on their asymptotic quadratic
risk. We will not carry out all derivations; instead, we will give a summary of our results
as follows:

i. Comparison of θ̂
U and θ̂

R: The risk of θ̂
U is constant, whereas the risk of θ̂

R depends
on δ′Wδ; hence, the difference in their risks is
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R1(θ̂
U , W)− R2(θ̂

R, W) = σ2tr(WC−1)− σ2tr[WC−1R′[RC−1R′]−1RC−1]

+δ′Wδ.

= σ2tr(WC−1)− tr(A11) + η′1 A11η1,

where C−1/2R′[RC−1R′]−1RC−1/2 is a symmetric idempotent matrix with rank m (≤q).
Therefore, by Courant’s theorem—see Saleh (2006)—there exists an orthogonal matrix
Γ such that

ΓC−1/2R′[RC−1R′]−1RC−1/2Γ′ =
(

Im 0
0 0

)
, and

ΓC−1/2WC−1/2Γ′ =
(

A11 A12
A′12 A22

)
.

Then

tr
[

W{C−1R′[RC−1R′]−1RC−1}
]

= tr(A11). (26)

δ′Wδ = η′1 A11η1, (27)

where η = ΓC1/2θ− ΓC−1/2R′[RC−1R′]−1r =
(

η1
η2

)
.

By Courant’s theorem, see Saleh (2006), we have

σ2∆2Chmin(A11) ≤ η′1 A11η1 ≤ σ2∆2Chmax(A11),

where Chmin(A11), Chmax(A11) are, respectively, the minimum and the maximum character-
istic roots of A11, and ∆2 = η′1η1/σ2, so, θ̂

R performs better than θ̂
U when ∆2 ≤ tr(A11)

Chmax(A11)
,

whereas θ̂
U performs better than θ̂

R whenever ∆2 ≥ tr(A11)
Chmin(A11)

.

ii. Comparison of θ̂
PT and θ̂

U : θ̂
PT performs better than θ̂

U when

∆2 ≤ tr(A11)

Chmin(A11)

Gm+2(χ
2
m(α); ∆2)

{2Gm+2(χ2
m(α); ∆2)− Gm+4(χ2

m(α); ∆2)} ,

where the opposite holds whenever

∆2 ≥ tr(A11)

Chmin(A11)

Gm+2(χ
2
m(α); ∆2)

{2Gm+2(χ2
m(α); ∆2)− Gm+4(χ2

m(α); ∆2)} .

iii. Comparison of θ̂
S and θ̂

U : θ̂
S performs better than θ̂

U whenever

tr(A11)

Chmax(A11)
≥ m + 2

2
.

Note that A11 involves the matrix W, hence, θ̂
S dominates θ̂

U . As ∆2 −→ ∞, the risk
difference approaches 0 from below.

iv. Comparison of θ̂
S and θ̂

S+: The risk difference is non-negative for all ∆2 so we have

R5(θ̂
S+, W) ≤ R4(θ̂

S, W) As a result, we can conclude that R5(θ̂
S+, W) ≤ R4(θ̂

S, W) ≤
R1(θ̂

U , W). which means that θ̂
S+ uniformly dominates the unrestricted estimator.

6. Numerical Studies

In this section, we will carry out a numerical study to investigate the performance of the
proposed estimators. In the first subsection, we aim to examine the relative performance of
the restricted, pretest and shrinkage estimators while appointing the unrestricted estimator
as a benchmark for comparison. A real dataset from the S&P500 stock market will be used
to compare the performance of the estimators to confirm the analytical results obtained in
the previous section.
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6.1. Monte Carlo Simulation Experiments

The Monte Carlo simulation experiments will be conducted to compare the restricted,
pretest and shrinkage estimators with respect to the unrestricted estimator. The following
algorithm is used for the Monte Carlo simulation

1. We consider the model in Equation (5), we partition θ as θ = (θ1, θ2), where θ1 is a
(q−m + 1)× 1 of non-zeros and θ2 is m× 1 vector of zeros. We define the parameter
∆2 = ||δ||where δ = θ− θ0, θ0 = (θ1, 0), θ = (θ1, 0+ δ) and ||.|| denotes the Euclidean
norm. ∆2 values were chosen to vary from 0 to 0.55 and m = 3, 4, 5, 9, 12 and 15.

2. Generate an error term (ηt) from standard normal distribution.
3. Generate the X matrix of size n× (q + 1) with initial values estimated from standard

normal distribution with n = 30, 50, 75, 100 and 150.
4. Estimate a matrix Unx1 = (η2 − 1) ∗ Xθ0.
5. Estimate the vector Y = Xθ0 + U
6. Estimate the unrestricted, restricted, pretest, shrinkage and positive shrinkage estimators.
7. Compute the simulated mean squared errors (SMSE) for each estimator using the

following formula
SMSE(θ̂∗) =

q+1

∑
i=1

(θ̂
∗ − θ)2, (28)

where θ̂∗ denotes any one of {θ̂U , θ̂
R, θ̂

PT , θ̂
S, θ̂

S+}.
8. Repeat steps (2)–(7) K times. We found that K = 3000 is a suitable choice to obtain stable results.
9. Compute the simulated relative efficiency (SRE) as follows

SRE(θ̂U , θ̂∗) =
SMSE(θ̂U

)

SMSE(θ̂∗)
, (29)

where θ̂
U is appointed as benchmark. A value greater than one of the SRE(θ̂U , θ̂∗)

indicates that θ̂∗ performs better than θ̂
U and vice versa.

Results of these simulations are reported in Figures 1–4. The numerical results effec-
tively assure our analytical results that the positive shrinkage estimator plays the role of a
safeguard against the high risks associated with the reduced model that we obtained under
the set of local alternatives. θ̂

R shows the best performance under the null space and it
degrades towards zero as the value of ∆2 goes way from the null space.

Figure 1. SRE of the restricted, pretest and shrinkage estimators with respect to θ̂
U when

(m, q) = (3, 8) and for different sample sizes.
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Figure 2. SRE of the restricted, pretest and shrinkage estimators with respect to θ̂
U when

(m, q) = (4, 9) and for different sample sizes.

Figure 3. SRE of the restricted, pretest and shrinkage estimators with respect to θ̂
U when

(m, q) = (5, 10) and for different sample sizes.

Figure 4. Cont.
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Figure 4. SRE of the restricted, pretest and shrinkage estimators with respect to θ̂
U when

(m, q) = (9, 14) and for different sample sizes.

As the value of ∆2 increases, the superiority changes from θ̂
R to θ̂

PT , θ̂
S and θ̂

S+,
respectively, and θ̂

S+ dominates other estimators, because it acts as a safeguard against the
high risks associated with the reduced model.

6.2. Application on Standard & Poor 500 (SP500) Stock Market

The “sp500dge” dataset contains daily closing prices of the Standard & Poor 500
(SP500) stock market that has been used by Ding et al. (1993). The dataset is also available
in fGarch/R-package produced by Wuertz and Chalabi (2008). Following the illustrative
example of Ding et al. (1993), we considered the most recent returns as our targeted subset
from 3 December 1988 to 30 August 1991. This contains 1000 daily returns (i.e., the official
working days in the financial market is 252).

To fit the ARCH model, we first conducted a Lagrange–Multiplier (LM) test to check
the effect of ARCH; more details about this test can be found in Tsay (2005). Then, we fit an
ARCH model with an adequate order. The order q = 12 is an adequate selection for our
data which represents the full model that given by Formula (30). θ̂

U is then obtained by
fitting the full model.

√
yt = σtεt, εt ∼ N(0, 1), σ2

t = ω + α1yt−1 + · · ·+ αqyt−q. (30)

In order to obtain the UPI from the data, we used AIC and BIC selection criteria to
pick the significant order under the forward selection strategy the selected order under the
auxiliary information of AIC and BIC represents the reduced model given by Formula (31).
Consequently, from the reduced model, we compute θ̂

R, the restricted estimator.

√
yt = σtεt, εt ∼ N(0, 1), σ2

t = ω + α1yt−1 + · · ·+ αq−m+1yt−q−m+1. (31)

To assess the performance of the estimators, we use the relative efficiency of the mean
squared error (RMSE) with respect to the true parameters θ which will be estimated by θ̂

∗,
where θ̂

∗ can be any of the estimators. The approach is based on the bootstrapping method
which is similar to that introduced by Freedman (1981).

After fitting the full model on the original data, the procedure is conducted in two
steps. The first step is as follows:

1. Select a sample of size n from the residuals of the full model, say E1, . . . , En with
replacement.

2. Compute the observations Y∗1 , . . . , Y∗n as follows

Y∗i = Ŷi + Ei, i = 1, . . . , n, (32)

where Ŷi is the ith fitted observation from the full model applied on the original data,
and Ei is the ith residual in (1).

3. Fit the ARCH model on Y∗i to obtain θ̂
U
boot(1).

4. Repeat steps (1)–(3) a number of times K until stable results are obtained—we found
that K = 3000 worked well.
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5. Compute the average of K iterations which will represent the true parameter θ.

After the true parameters’ vector has been estimated in the previous step, the second
step is conducted as follows:

1. Select a sample of size n from the residuals of the full model, say E1, . . . , En with
replacement.

2. Compute Y∗1 , . . . , Y∗n as follows

Y∗i = Ŷi + Ei, i = 1, . . . , n, (33)

where Ŷi is the ith fitted observation from the full model applied on the original data
and Ei is the ith residual in (1).

3. Fit both the full and reduced models and compute θ̂
U
boot(1) and θ̂

R
boot(1), then obtain

θ̂
PT
boot(1), θ̂

S
boot(1) and θ̂

S+
boot(1).

4. Compute the predicted values Ŷ∗i using the estimated parameters of all estimators

Ŷ∗i (1) = Xθ̂boot(1),

where θ̂
∗
boot(1) ∈ {θ̂

U
boot(1), θ̂

R
boot(1), θ̂

PT
boot(1), θ̂

S
boot(1), θ̂

S+
boot(1)}.

5. Compute the Bootstrapping Mean Squared Error (MSEB) of θ̂
∗
boot(1) the estimator θ̂

∗

as follows:

MSEBθ̂
∗
boot(1) =

n

∑
i=1

(θ̂
∗
boot(1)− θ̂

∗
)2. (34)

6. Repeat steps (1)–(5) a number of times K until stable results are obtained. We found
that K = 3000 is an adequate number of iterations.

7. Compute the relative efficiency of the mean squared error (RMSE) as follows,

RMSE(θ∗) =
Average of MSEB for θ̂

U

Average of MSEB for θ̂
∗ . (35)

Results of the RMSEs for our data are reported in Table 1.

Table 1. Relative MSE with respect to θ̂
U for the S&P500 stock market daily closing prices.

Estimator θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

MSE 1.1236 1.0010 1.0236 1.0382

It is clear that θ̂
R outperforms all other estimators which indicates that the restriction

given by the null hypothesis is correct. θ̂
S+ comes the second and then it is θ̂

S. θ̂
PT

performs better than θ̂
U even though it was the worst among other estimators. This may

be an indication that the AIC/BIC selection criteria worked quite well on this dataset.

7. Conclusions

In this article, we investigated the performance of the pretest and James–Stein (shrink-
age) estimators to estimate the parameter’s vector θ of the ARCH model. These estimators
were first analytically compared via their asymptotic quadratic risk and asymptotic mean
square error matrices and then numerically compared using simulated and real datasets to
confirm our analytical results. However, the reduced model in some cases might not be
the right choice: analytical and numerical results showed that the pretest and James–Stein
estimators represent a safeguard against the high risks associated with the reduced model
that we obtain under the set of local alternatives.

Historically, the ARCH model is the simplest version of ARCH family models; how-
ever, its drawback is that it requires many parameters to adequately describes the volatility
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of such phenomena, and the positive James–Stein estimator should successfully overcome
this dilemma by providing a parsimonious submodel (reduced model). To obtain a UPI,
we used AIC and BIC selection criteria to select the reduced model.

According to our research findings, it is recommended that the positive James–Stein
estimator is used as it outperforms all other estimators regardless of whether the restriction
given by the null hypothesis is true. In addition, the proposed estimation strategy can be
applied to different ARCH family models.
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Appendix A. Proof of Theorem 4

(1) The proof follows from (Francq and Zikoïan 2004; Francq and Zakoïan 2012; Weiss
1986).

(2)

T(2)
n =

√
n(θ̂R − θ) =

√
n{θ̂U

+ C−1R′[RC−1R′]−1(r− Rθ̂
U
)− θ}

=
√

n(θ̂U − θ) +
√

n{C−1R′[RC−1R′]−1(r− Rθ̂
U
)}

=
√

n(θ̂U − θ)−
√

n{C−1R′[RC−1R′]−1(R(θ̂U − θ)

+Rθ− r)}

=
√

n(θ̂U − θ)− C−1R′[RC−1R′]−1R
√

n(θ̂U − θ) +

C−1R′[RC−1R′]−1√n(Rθ− r)

= T(1)
n + C−1R′[RC−1R′]−1RT(1)

n − C−1R′[RC−1R′]−1√n(Rθ− r)

=

[
Iq − C−1R′[RC−1R′]−1R

]
T(1)

n −
√

n{C−1R′[RC−1R′]−1(Rθ− r)},

where I is the identity matrix.

T(2)
n is a linear combination in T(1)

n that can be represented in a matrix format as
T(2)

n = A2T(1)
n − B2 where A2 and B2 are given as follows

A2 =

[
Iq − C−1R′[RC−1R′]−1R

]
q×q

, B2 =

[
C−1R′[RC−1R′]−1(Rθ− r)

]
q×1

.

From Theorem 4 part (1), as n −→ ∞, T(2)
n

L−→ T(2) and by Slutsky’s Theorem,

T(2)
n

L−→ T(2) ∼ Nq

(
µ(2), Σ(2)

)
, (A1)

with µ(2) and Σ(2) which are given by

µ(2) = −C−1R′[RC−1R′]−1(Rθ− r)

= −δ,
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and

Σ(2) = σ2C−1 − 2σ2 A + C−1R′[RC−1R′]−1Rσ2C−1[RC−1R′]−1RC−1

= σ2[C−1 − 2A + A]

= σ2[C−1 − A].

Similarly, we can prove Formulas (1)–(6).

Appendix B. Proof of Theorem 5

The proof of Formulas (1) and (2) are straightforward.

(3)

√
n(θ̂PT − θ) =

√
n
(

θ̂
U − (θ̂

U − θ̂
R
)I(L ≤ Lα)− θ

)
=
√

n(θ̂U − θ)−
√

n(θ̂U − θ̂
R
)I(L ≤ Lα)

= T(1)
n +

(√
n(X′X)−1R′[RC−1R′]−1

(r− Rθ)I(L ≤ Lα)

)
,

As n −→ ∞, with Slutsky’s theorem, we have Ln
L−→ L ∼ χ2

m and Ln,α
L−→ L ∼ χ2

m(α),
then,

√
n(θ̂PT − θ) = C−1R′[RC−1R′]−1(r− Rθ)Gm+2(χ

2
m(α); ∆2)

= −δGm+2(χ
2
m(α); ∆2)

B3(θ̂
PT

) = ∆2[Gm+2(χ
2
m(α); ∆2)]2.

Similarly, we can prove Formulas (4) and (5).

Appendix C. Proof of Theorem 6

(1) Part (1) is straightforward.

(2) Note that n(θ̂R − θ)(θ̂
R − θ)′ = T(2)

n T(2)′
n . Then, by Theorem 4 part (2), we have

M2(θ̂
R
) = E[n(θ̂R − θ)(θ̂

R − θ)′]

= E
{

n{(θ̂U − θ)− C−1Ŕ[RC−1R′]−1(Rθ− r)}

{(θ̂U − θ)− C−1Ŕ[RC−1R′]−1(Rθ− r)}′
}

= σ2C−1 + C−1R′[RC−1R′]−1E{(Rθ̂
U − r)(Rθ̂

U − r)′} ×

[RC−1R′]−1RC−1 − 2C−1R′[RC−1R′]−1 × E{(Rθ̂
U − r)

(Rθ̂
U − r)′}

= σ2C−1 + C−1R′[RC−1R′]−1{σ2(RC−1R′) + (Rθ− r)(Rθ

−r)′} × [RC−1R′]−1RC−1 − 2σ2C−1R′[RC−1R′]−1RC−1

= σ2C−1 − σ2C−1R′[RC−1R′]−1RC−1 + δδ́

= σ2[C−1 − A] + δδ́.

R2(θ̂
R, W) = σ2tr(W(C−1 − A)) + δWδ́.

Similarly, Formulas (3)–(5) can be proven.
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