Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/273032 
Erscheinungsjahr: 
2022
Schriftenreihe/Nr.: 
Working Papers No. 22-11
Verlag: 
Federal Reserve Bank of Boston, Boston, MA
Zusammenfassung: 
This paper considers the problem of record linkage between a household-level survey and an establishment-level frame in the absence of unique identifiers. Linkage between frames in this setting is challenging because the distribution of employment across establishments is highly skewed. To address these difficulties, this paper develops a probabilistic record linkage methodology that combines machine learning (ML) with multiple imputation (MI). This ML-MI methodology is applied to link survey respondents in the Health and Retirement Study to their workplaces in the Census Business Register. The linked data reveal new evidence that non-sampling errors in household survey data are correlated with respondents' workplace characteristics.
Schlagwörter: 
Administrative data
machine learning
multiple imputation
probabilistic record linkage
survey data
JEL: 
C13
C18
C81
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
804.98 kB





Publikationen in EconStor sind urheberrechtlich geschützt.