Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/259540 
Erscheinungsjahr: 
2021
Schriftenreihe/Nr.: 
LEM Working Paper Series No. 2021/45
Verlag: 
Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM), Pisa
Zusammenfassung: 
The idiosyncratic (microscopic) and systemic (macroscopic) components of market structure have been shown to be responsible for the departure of the optimal mean-variance allocation from the heuristic 'equally-weighted' portfolio. In this paper, we exploit clustering techniques derived from Random Matrix Theory (RMT) to study a third, intermediate (mesoscopic) market structure that turns out to be the most stable over time and provides important practical insights from a portfolio management perspective. First, we illustrate the benefits, in terms of predicted and realized risk profiles, of constructing portfolios by filtering out both random and systemic comovements from the correlation matrix. Second, we redefine the portfolio optimization problem in terms of stock clusters that emerge after filtering. Finally, we propose a new wealth allocation scheme that attaches equal importance to stocks belonging to the same community and show that it further increases the reliability of the constructed portfolios. Results are robust across different time spans, cross-sectional dimensions and set of constraints defining the optimization problem
Schlagwörter: 
Random matrix theory
Community detection
Mesoscopic structures
Portfolio optimization
JEL: 
C02
D85
G11
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
681.96 kB





Publikationen in EconStor sind urheberrechtlich geschützt.