Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/258261 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 9 [Issue:] 10 [Article No.:] 177 [Publisher:] MDPI [Place:] Basel [Year:] 2021 [Pages:] 1-17
Verlag: 
MDPI, Basel
Zusammenfassung: 
This paper addresses the problem of approximating the future value distribution of a large and heterogeneous life insurance portfolio which would play a relevant role, for instance, for solvency capital requirement valuations. Based on a metamodel, we first select a subset of representative policies in the portfolio. Then, by using Monte Carlo simulations, we obtain a rough estimate of the policies' values at the chosen future date and finally we approximate the distribution of a single policy and of the entire portfolio by means of two different approaches, the ordinary least-squares method and a regression method based on the class of generalized beta distribution of the second kind. Extensive numerical experiments are provided to assess the performance of the proposed models.
Schlagwörter: 
GB2
LSMC
metamodel
regression models
Solvency II
JEL: 
G22
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
526.95 kB





Publikationen in EconStor sind urheberrechtlich geschützt.