Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/258113 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 9 [Issue:] 1 [Article No.:] 23 [Publisher:] MDPI [Place:] Basel [Year:] 2021 [Pages:] 1-38
Verlag: 
MDPI, Basel
Zusammenfassung: 
Inspired by the article Weak Convergence Rate of a Time-Discrete Scheme for the Heston Stochastic Volatility Model, Chao Zheng, SIAM Journal on Numerical Analysis 2017, 55:3, 1243-1263, we studied the weak error of discretization schemes for the Heston model, which are based on exact simulation of the underlying volatility process. Both for an Euler- and a trapezoidal-type scheme for the log-asset price, we established weak order one for smooth payoffs without any assumptions on the Feller index of the volatility process. In our analysis, we also observed the usual trade off between the smoothness assumption on the payoff and the restriction on the Feller index. Moreover, we provided error expansions, which could be used to construct second order schemes via extrapolation. In this paper, we illustrate our theoretical findings by several numerical examples.
Schlagwörter: 
discretization schemes for SDEs
exact simulation of the CIR process
Heston model
Kolmogorov PDE
Malliavin calculus
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.