Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/258095 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 9 [Issue:] 1 [Article No.:] 5 [Publisher:] MDPI [Place:] Basel [Year:] 2021 [Pages:] 1-18
Verlag: 
MDPI, Basel
Zusammenfassung: 
Predicting the evolution of mortality rates plays a central role for life insurance and pension funds. Standard single population models typically suffer from two major drawbacks: on the one hand, they use a large number of parameters compared to the sample size and, on the other hand, model choice is still often based on in-sample criterion, such as the Bayes information criterion (BIC), and therefore not on the ability to predict. In this paper, we develop a model based on a decomposition of the mortality surface into a polynomial basis. Then, we show how regularization techniques and cross-validation can be used to obtain a parsimonious and coherent predictive model for mortality forecasting. We analyze how COVID-19-type effects can affect predictions in our approach and in the classical one. In particular, death rates forecasts tend to be more robust compared to models with a cohort effect, and the regularized model outperforms the so-called P-spline model in terms of prediction and stability.
Schlagwörter: 
elastic-net
forecasting
mortality
Poisson generalized linear model
regularization
smoothing
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.