Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/258070 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 8 [Issue:] 4 [Article No.:] 117 [Publisher:] MDPI [Place:] Basel [Year:] 2020 [Pages:] 1-15
Verlag: 
MDPI, Basel
Zusammenfassung: 
The lifestyles and backgrounds of individuals across the United States differ widely. Some of these differences are easily measurable (ethnicity, age, income, etc.) while others are not (stress levels, empathy, diet, exercise, etc.). Though every person is unique, individuals living closer together likely have more similar lifestyles than individuals living hundreds of miles apart. Because lifestyle and environmental factors contribute to mortality, spatial correlation may be an important feature in mortality modeling. However, many of the current mortality models fail to account for spatial relationships. This paper introduces spatio-temporal trends into traditional mortality modeling using Bayesian hierarchical models with conditional auto-regressive (CAR) priors. We show that these priors, commonly used for areal data, are appropriate for modeling county-level spatial trends in mortality data covering the contiguous United States. We find that mortality rates of neighboring counties are highly correlated. Additionally, we find that mortality improvement or deterioration trends between neighboring counties are also highly correlated.
Schlagwörter: 
mortality improvement
Bayesian modeling
spatial generalized linear model
conditional auto-regressive priors
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
997.47 kB





Publikationen in EconStor sind urheberrechtlich geschützt.