Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/257472 
Year of Publication: 
2020
Citation: 
[Journal:] Games [ISSN:] 2073-4336 [Volume:] 11 [Issue:] 4 [Article No.:] 54 [Publisher:] MDPI [Place:] Basel [Year:] 2020 [Pages:] 1-10
Publisher: 
MDPI, Basel
Abstract: 
Pursuit-evasion games are used to define guidance strategies for multi-agent planning problems. Although optimal strategies exist for deterministic scenarios, in the case when information about the opponent players is imperfect, it is important to evaluate the effect of uncertainties on the estimated variables. This paper proposes a method to characterize the game space of a pursuit-evasion game under a stochastic perspective. The Mahalanobis distance is used as a metric to determine the levels of confidence in the estimation of the Zero Effort Miss across the capture zone. This information can be used to gain an insight into the guidance strategy. A simulation is carried out to provide numerical results.
Subjects: 
Cramér-Rao lower bound
differential games
Mahalanobis distance
missile guidance
observability
pursuit-evasion games
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.