Publisher:
Ludwig-Maximilians-Universität München und Humboldt-Universität zu Berlin, Collaborative Research Center Transregio 190 - Rationality and Competition, München und Berlin
Abstract:
This paper presents an empirical investigation of the relation between decision speed and decision quality for a real-world setting of cognitively-demanding decisions in which the timing of decisions is endogenous: professional chess. Move-by-move data provide exceptionally detailed and precise information about decision times and decision quality, based on a comparison of actual decisions to a computational benchmark of best moves constructed using the artificial intelligence of a chess engine. The results reveal that faster decisions are associated with better performance. The findings are consistent with the predictions of procedural decision models like drift-diffusion-models in which decision makers sequentially acquire information about decision alternatives with uncertain valuations.