Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/249720 
Erscheinungsjahr: 
2021
Schriftenreihe/Nr.: 
Texto para discussão No. 672
Verlag: 
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia, Rio de Janeiro
Zusammenfassung: 
This paper proposes a generalization of the class of realized semivariance and semicovariance measures introduced by Barndorff-Nielsen, Kinnebrock and Shephard (2010) and Bollerslev, Li, Patton and Quaedvlieg (2020a) to allow for a finer decomposition of realized (co)variances. The new "realized partial (co)variances" allow for multiple thresholds with various locations, rather than the single fixed threshold of zero used in semi (co)variances. We adopt methods from machine learning to choose the thresholds to maximize the out-ofsample forecast performance of time series models based on realized partial (co)variances. We find that in low dimensional settings it is hard, but not impossible, to improve upon the simple fixed threshold of zero. In large dimensions, however, the zero threshold embedded in realized semi covariances emerges as a robust choice.
Schlagwörter: 
High-frequency data
realized variation
volatility forecasting
JEL: 
C22
C51
C53
C58
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
389.58 kB





Publikationen in EconStor sind urheberrechtlich geschützt.