Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/243660 
Year of Publication: 
2019
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 5 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2019 [Pages:] 1163-1171
Publisher: 
Elsevier, Amsterdam
Abstract: 
This study experimentally evaluates the interaction of the oxygen enhanced combustion (OEC) technique with the pulsating combustion technique by the acoustic excitation of flames, the effects of these techniques on atmospheric emissions of CO, NOx, formaldehyde and acetaldehyde, and the temperature of exhaust gases in diffusive and confined natural gas flames. The results showed a general trend of reductions in the emissions of CO and NOx with the enrichment of the oxidant with O2 and also under some conditions with an acoustically excited flame. The results showed that the acetaldehyde emissions decreased with the ratio of equivalence but increased in the presence of acoustic excitation. Formaldehyde emissions showed no significant trend. The results show that the simultaneous application of the OEC and acoustic excitation techniques in a controlled manner can reduce pollutant emissions and increase the efficiency of thermal combustion equipment.
Subjects: 
Acoustic excitation in flames
Combustion chamber
Emission
OEC
Pulsating combustion
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.