Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/239387 
Year of Publication: 
2020
Citation: 
[Journal:] Journal of Risk and Financial Management [ISSN:] 1911-8074 [Volume:] 13 [Issue:] 12 [Publisher:] MDPI [Place:] Basel [Year:] 2020 [Pages:] 1-24
Publisher: 
MDPI, Basel
Abstract: 
Volatility clustering and fat tails are prominently observed in financial markets. Here, we analyze the underlying mechanisms of three agent-based models explaining these stylized facts in terms of market instabilities and compare them on empirical grounds. To this end, we first develop a general framework for detecting tail events in stock markets. In particular, we introduce Hawkes processes to automatically identify and date onsets of market turmoils which result in increased volatility. Second, we introduce three different indicators to predict those onsets. Each of the three indicators is derived from and tailored to one of the models, namely quantifying information content, critical slowing down or market risk perception. Finally, we apply our indicators to simulated and real market data. We find that all indicators reliably predict market events on simulated data and clearly distinguish the different models. In contrast, a systematic comparison on the stocks of the Forbes 500 companies shows a markedly lower performance. Overall, predicting the onset of market turmoils appears difficult, yet, over very short time horizons high or rising volatility exhibits some predictive power.
Subjects: 
volatility clustering
agent-based modeling
hawkes processes
early warning signs
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.