
Bertschinger, Nils; Pfante, Oliver

Article

Early warning signs of financial market turmoils

Journal of Risk and Financial Management

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Bertschinger, Nils; Pfante, Oliver (2020) : Early warning signs of financial market
turmoils, Journal of Risk and Financial Management, ISSN 1911-8074, MDPI, Basel, Vol. 13, Iss. 12,
pp. 1-24,
https://doi.org/10.3390/jrfm13120301

This Version is available at:
https://hdl.handle.net/10419/239387

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/jrfm13120301%0A
https://hdl.handle.net/10419/239387
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Journal of

Risk and Financial
Management

Article

Early Warning Signs of Financial Market Turmoils

Nils Bertschinger 1,2,*,† and Oliver Pfante 1,†

1 Systemic Risk Group, Frankfurt Institute for Advanced Studies,
D-60438 Frankfurt am Main, Hesse, Germany; opfante@gmail.com

2 Department of Computer Science, Goethe University, D-60323 Frankfurt am Main, Hesse, Germany;
* Correspondence: bertschinger@fias.uni-frankfurt.de; Tel.: +49-69-798-47616
† These authors contribute equally to this paper.

Received: 21 October 2020; Accepted: 25 November 2020; Published: 30 November 2020 ����������
�������

Abstract: Volatility clustering and fat tails are prominently observed in financial markets. Here,
we analyze the underlying mechanisms of three agent-based models explaining these stylized facts in
terms of market instabilities and compare them on empirical grounds. To this end, we first develop a
general framework for detecting tail events in stock markets. In particular, we introduce Hawkes
processes to automatically identify and date onsets of market turmoils which result in increased
volatility. Second, we introduce three different indicators to predict those onsets. Each of the three
indicators is derived from and tailored to one of the models, namely quantifying information content,
critical slowing down or market risk perception. Finally, we apply our indicators to simulated and
real market data. We find that all indicators reliably predict market events on simulated data and
clearly distinguish the different models. In contrast, a systematic comparison on the stocks of the
Forbes 500 companies shows a markedly lower performance. Overall, predicting the onset of market
turmoils appears difficult, yet, over very short time horizons high or rising volatility exhibits some
predictive power.

Keywords: volatility clustering; agent-based modeling; hawkes processes; early warning signs

1. Introduction

Financial market prices are vastly fluctuating with prices occasionally rallying upwards and
suddenly collapsing back down. The notion of “excess volatility” has been coined as price fluctuations
often not being able to be reconciled with changes in economic fundamentals (Shiller 2005). On the
contrary, volatility, i.e., the standard deviation of returns, appears to exhibit a dynamics of its own,
exhibiting temporal clustering and long-range dependence (Chakraborti et al. 2011; Cont 2001).
Econophysics has since developed and proposed models which explain these and other stylized facts
of volatility in terms of endogenous dynamics arising from the collective action of many heterogeneous
traders (Aymanns and Farmer 2015; Franke and Westerhoff 2016; Lux and Marchesi 1999; Patzelt and
Pawelzik 2013; Samanidou et al. 2007).

According to this view, market fluctuations are amplified by feedbacks inherent in the dynamics of
traders, e.g., arising from chartist strategies (Lux and Marchesi 1999), herding (Franke and Westerhoff 2016)
or leverage targeting (Aymanns and Farmer 2015). While these models can replicate several stylized
facts, their empirical estimation and analysis remains challenging. Yet, according to these models,
especially large market fluctuations are driven by dynamical instabilities and could potentially be
preceded by specific statistical signatures such as critical slowing down. While critical slowing down
has successfully been used as an early warning sign from physics to ecology (see Scheffer et al. (2012)
and references therein), complex systems thinking is still not widespread among economic scientists
and practitioners. Nevertheless, some anecdotal evidence, i.e., focusing on crisis periods alone without
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a systematic investigation of predictive performance, has found that rising volatility might provide an
early warning sign of financial crises (Diks et al. 2018; Guttal et al. 2016). In contrast, within economics
statistical studies of forecasting of financial crises provide quantitative comparison of different methods,
e.g., logistic regression, but they have focused on aggregate macroeconomic data such as growth of
equity prices and credit levels (Drehmann and Juselius 2013). Thereby being in the realm of classical
statistics without influences from the science of complex systems.

Motivated by these studies, we analyze a similar question. In particular, we develop and
analyze several early warning signs indicating periods of elevated volatility. Our contribution is
threefold: First, we provide an operational method to automatically date the onset of volatility clusters,
referred to as financial turmoil in the following. In contrast to financial crises, which occur very
infrequently and are often dated manually based on the unfolding of macroeconomic developments
after the fact (Reinhart and Rogoff 2009), financial turmoil is slightly more prevalent and thereby
allows for better statistical analysis. Yet, it is sufficiently different from more common notions of
financial risk, such as captured by (implied) volatility indices (Chicago Board Options Exchange 2019),
SRISK (Brownlees and Engle 2017) or CoVaR (Adrian and Brunnermeier 2016). As demanded
from econometric risk indicators, these statistics track financial or systemic risk and, in particular,
stay elevated during periods of high volatility. Here, we are instead especially interested in the
dynamics preceding such periods and therefore require methods to date their onset. Hawkes processes,
i.e., self-exciting point processes, provide an alternative modeling framework and have been shown
to capture clustering in extreme market returns (Embrechts et al. 2011; Stindl and Chen 2019). Thus,
we build our dating procedure on such methods. To this end, a Hawkes process is fitted to each
return series. Large jumps in the Hawkes intensity then reliably identify the first events in each
series of clustered tail returns. Note that no prediction is desired here. Instead, our method
is designed to date market events, i.e., mark there onset after they have been observed, in an
automated and reproducible fashion. Secondly, we study several models and derive early warning
indicators which are meaningful with respect to the instability underlying each model. In this
respect, our investigations complement more direct fitting exercises and comparisons of agent-based
models, e.g., via moment-matching (Franke and Westerhoff 2012) or likelihood based methods
(Bertschinger and Mozzhorin 2020; Lux 2018). While agent-based models have been shown to capture
volatility dynamics with similar precision as established stochastic volatility models, uncovering the
mechanisms driving financial turmoils has remained unfruitful. A problem appears to be that model
fitting requires a match to all of the data and not just of the instable times preceding financial turmoils.
Thus, by focusing on these events specifically, we strive to uncover complementary information and
obtain insights into the mechanisms underlying market instabilities as our main research objective.
Thirdly, we carry out a systematic and quantitative investigation comparing the performance of several
indicators across simulated as well as hundreds of actual stock data. To this end, we put forward
the receiver operator characteristic (ROC), a well established technique from machine learning and
statistics to evaluate the performance of binary classifiers. As we explain below, this method is
particularly suited to access and compare forecasts of rare events.

Overall, our paper is structured as follows: Section 2.1 shortly introduces Hawkes processes and
explains their role for identifying and dating onsets of turbulent market periods, i.e., market events.
Thus, having defined what we consider as market events, Section 2.2 turns to our main research
question on which possible mechanisms could drive such events. In particular, we consider three
agent-based models illustrating different mechanisms leading to clustered volatility and derive early
warning signals, i.e., specific statistical signatures, tailored to each of them. Next, in Section 2.3 we
introduce the ROC and explain how it can be used to evaluate the ability of each indicator to predict
market events. With all methodological considerations in place, Section 3 contains the evaluation
results on both, simulated as well as real, market data sets. Last but not least, Section 4 discusses and
concludes our study.
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2. Methodology

2.1. Market Event Detection

Detecting the onset of turbulent market periods requires that we can identify and date the onset
of volatility clusters, i.e., periods of elevated volatility. To this end, we start by fitting 2-dimensional
Hawkes process, see Appendix A.1 for additional details, on daily stock return data within a certain
observation period [T∗, T∗] as follows:

1. The triplet series (tn, dn, rn) of events at times tn ∈ [T∗, T∗] is specified as follows: if a positive
return rn which exceeds the positive 5% quantile occurs at day tn, then dn = 1 and if there is a
negative return which is smaller than the 5% negative quantile, then dn = 2. Otherwise, no event
is recorded.

Thus, overall we focus on the largest 10% of absolute returns. This threshold has been found to
be well suited for detecting financial turmoil, which is thought to be accompanied by the largest
absolute returns.

2. For each Hawkes process, i.e., modeling positive and negative returns, we choose two
independent exponential decay functions ωj, each of which has the form

ωj = αj exp(αjt) for j = 1, 2

3. As mark distributions we choose two independent Pareto distributions f j, with densities

f j =
ρjµ

ρj
j

(x + µj)
ρj+1 for j = 1, 2

along with a polynomial impact function gj

(ρj − 1)(ρj − 2)

2µ2
j

x2 .

4. The 2× 2 branching matrix Q has zero entries on its diagonal. We make this restriction because
even without this constraint the maximum likelihood fit of this Hawkes process on the triplet
series (tn, dn, rn) for all the stocks and models which we consider in the sequel set the diagonal
parameters of the branching matrix Q to zeroish values. This implies that the intensity for the
Hawkes process exhibits no self-excitation and large positive returns are triggered by negative
tail returns and vice versa.

Overall, these Hawkes processes describe the dynamics of observed event series (tn, dn, rn).
As described in Appendix A.1, each time an event occurs, either the intensity for positive returns
(dn = 1) or negative returns (dn = 2) jumps with mark value rn. The process intensities are coupled
via the branching parameters Q and the impact functions g1,2. The choice for the polynomial impact
function is motivated from the GARCH model. Denoting the intensity of the j-th component at time
t with λj(t), we can compute λj(t) recursively (actually not the intensity λj(t) itself but a proxy,
see Liniger (2009))

λj(tn) = ηj + exp(−αj(tn − tn−1))
(
λj(tn−1 − ηj

)
+ θj,dn−1 αj exp(−αj(tn − tn−1))gdn−1(rn−1)

where ηj is the immigration parameter of the component j and we have assumed exponential
decay functions. θj,dn−1 is the descendant parameter at row j and column dn−1 in the kernel of a
Hawkes process, as described in Appendix A.1. If we take the definition of the impact function gdn−1

and introduce
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β = exp(−αj(tn − tn−1))

α = θj,dn−1 αj exp(−αj(tn − tn−1))
(ρdn−1 − 1)(ρdn−1 − 2)

2µ2
dn−1

ω = ηj(1− β)

the recursive formula adopts the form

λj(tn) = ω + αr2
n−1 + βλj(tn−1) .

If we take into account that rn−1 is a return beyond a certain quantile, λj(tn) can be interpreted as
variance σ2

tn
in terms of the GARCH(1,1) model. Nevertheless, there are important differences between

our GARCH like formula and an actual GARCH(1,1) model: the parameters α, β and ω depend on
the time via the Hawkes process dynamics, and we do not assume that tail returns rn−1 are normally
distributed. Furthermore, the Hawkes process only describes the dynamics of tail returns, i.e., the 5%
largest positive and negative returns, thereby focusing on turbulent periods alone.

Figure 1 shows an example of the 2-dimensional Hawkes process fitted to the returns of the
S&P 500 within the time period T∗ = 1950\01\04 and T∗ = 2016\12\30. Over this time period the
maximum likelihood estimate yields the following parameter values:

η1 = 0.0221 θ12 = 0.528 α1 = 0.00489 µ1 = 0.0281 ρ1 = 4.71
η2 = 0.0340 θ21 = 0.331 α2 = 0.0318 µ2 = 0.0224 ρ2 = 3.86

1952 1962 1972 1982 1992 2002 2012

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Figure 1. The S&P 500 return series along with the intensities of the Hawkes processes describing the
5% quantiles of the positive and negative returns. The largest upward jumps of the Hawkes intensities
are considered to mark onsets of market turmoil.

It is clearly visible, how the Hawkes intensities jump most strongly at the beginning of a cluster
covering several tail returns. This in turn allows us to date the onset of financial turmoil via large
jumps in the Hawkes intensities. Note that the intensity dynamics of the Hawkes processes is inferred
by fitting them to the whole observation window. Thus, large jumps in intensity arise after the
fact, when an initial event—at the time of the jump—is followed by additional events. This way,
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the dynamics of the Hawkes process allows one to date the onset of a turbulent market period,
i.e., a cluster of several events corresponding to tail returns but is not predictive for their occurrence.

Formally we define a market event as follows: Recall, λ1(t) denotes the intensity of the upper
hawkes process in Figure 1. Here, we assume that a jump in the upper intensity process indicates
a market crash and the onset of the subsequent volatility cluster. While it might feel more intuitive
to consider the lower intensity process, we found that large negative jumps are purely driven by
positive jumps and do not exhibit self-excitation (see remark 4 on the diagonal entries of the branching
matrix being zero). Thus, dating is actually more precise when using the upper intensity process alone.
We measure the jump-size via the ratio I(t) = λ1(t)/λ1(t− 1) and introduce a binary event variable
Ym via

Ym =

{
1 if the I(t) > θ

0 else

where θ > 0 is a certain threshold. Throughout the paper we take the 1.5 per mill quantile of the
time series (I(t))t∈[T∗ ,T∗ ]. Again, we have investigated other thresholds but found this value to work
robustly across simulated as well as real market data. Ym(t) then simply records whether a market
event occurred or not. Thus, all times where Ym(t) = 1 are the dates of the desired market events.
Figure 1 shows the detected event dates (marked by red bars) as detected on the S&P 500 returns. It is
clearly visible that large negative returns and, arguably, most onsets of volatility clusters are detected
as market events.

Our goal is now to derive early warning indicators which can predict the occurrence of
market events.

2.2. Indicators

Econophysics provides a variety of explanations for mechanisms which drive endogeneous
market events, e.g., in terms of fundamentalists and chartists trading on a single asset or leveraged
investors. Here, we pick three models and derive indicators from them.

2.2.1. Information Absorption

Patzelt and Pawelzik (2013) present a reduced agent based model where market instabilities
occur from information absorption. In this model agents trade in money or stocks based on public
information states µ(t). This information can be either exogeneous, i.e., unrelated to past price
movements, or endogeneous. In the latter case, the information available is derived from the
signs of the last K returns rt−K, . . . , rt−1. Thus, with K = 2 four states of information could be
distinguished corresponding to past price movements (u, u), (u, d), (d, u) and (d, d) where u, d denote
positive/negative returns, i.e., rising or falling prices, over the last two days respectively. Each agent
then uses a fixed strategy mapping observed information to buy or sell decisions. Market prices
are in turn determined from the aggregate demand of all traders. The model distinguishes between
two types of traders, namely producers and speculators. Whereas producers have fixed resources,
speculators gain or lose wealth based on their trading decisions. Appendix A.2 contains further details
on this model.

Here, we consider the following parameters

Ns = 210, Np = 0, K = 9, γ = 0.8 (1)

and consider only the case of endogeneously generated information. Patzelt and Pawelzik (2013)
show that with these parameters the model reproduces stylized facts known from stock market return
series: volatility clustering, long-range correlation of the absolute values of the returns and heavy tails.
A typical return time series generated by this parameter set is presented in Figure 2. Note that large
negative returns are often followed by periods of elevated volatility and correctly detected as market
events by our automatic dating method.
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Figure 2. Return time series produced for purely endogenous information and the parameters in
Equation (1) for 16, 000 time steps. The red lines mark the times of market turmoil as detected by our
method based on Hawkes process intensities.

Interestingly, the collective trading activities of the agents corresponds to a learning rule related
to gradient descent which reduces price fluctuations. Hence, the system tends in general towards
an equilibrium after some time and price fluctuations, that is returns are reduced. This equilibrium
becomes unstable once all predictable information, i.e., binary sequences encoding the return sign,
has been already exploited by the agents. Then, an information state which has not been seen
in the recent past leads to massive price changes because the market is not well adapted—see
Patzelt and Pawelzik (2013) for further details. Therefore, Patzelt and Pawelzik do not only provide a
reduced agent based model which reproduces stylized facts of financial markets but also provides an
indicator for when market events are occurring in their model: they tend to occur after rarely seen
information states.

Formally, we define the indicator value XPP(t) as

XPP(t) = log p̂(sgn(rt−K), . . . , sgn(rt−1))

where the probabilities p̂(sgn(rt−K), . . . , sgn(rt−1)) of the binary sequences encoding the signs of
the K + 1 preceding returns are estimated by their empirical frequencies on the whole time series.
Thus, low values of the indicator are expected to precede market events. To aid comparison with
the simulation results, we fix K = 9 in the following, but note that other choices would lead to
similar results as the mechanism of the model is rather robust to changes of this parameter. Indeed,
the indicator merely needs to rank sequences of past returns according to their probability in order to
provide a meaningful early warning signal of market instabilities.

2.2.2. Scaling and Criticality

The seminal paper by Lux and Marchesi (1999) stresses the point that stock prices exhibit universal
scaling behavior which can be found in other physical systems with a large number of interacting
microscopic particles generating a trend on a macroscopic scale. In (Lux and Marchesi 1999) the
particles are thought to be agents which fall into two classes: fundamentalists, they follow the premise
of an efficient market and expect the price to follow the so called fundamental value; chartists, they are
traders which do not only try to identify price trends and patterns but also take behavior of other
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agents into account. The main building block of the model is the possibility of agents to move from
one group to another. That is, chartists may become fundamentalists and vice versa based on the
current profitability of each strategy. We refer the interested reader to Lux and Marchesi (2000) for the
mathematical details of the model.

Here, we simulated the model with the following parameters

N = 500, ν1 = 3, ν2 = 2, β = 60, Tc(≡ Ntc) = 10, Tf (≡ Nγ) = 5

α1 = 0.6, α2 = 0.2, α3 = 0.5, p f = 10, r = 0.004, R = 0.0004, s = 0.75

as detailed in Appendix A.2. In this specification, the model generates return series with volatility
clustering and market crashes whose sizes follow a power law. Those periods of wild market behavior
occur in the model if the ratio of chartists versus fundamentalists is imbalanced in favor of the chartists.
Market turmoil then occurs if the ratio exceeds a critical threshold. Figure 3 shows an example
return series as well as the fraction of chartist traders. Again our method for dating market events
nicely detects large negative returns starting a volatility cluster. Interestingly, this often concurs with
local maxima in the fraction chartist traders even though that information is not available to the
dating procedure.

5500 6000 6500 7000 7500 8000

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3. Return time series in blue along with the ratio of chartists compared to the overall number of
trading agents. One clearly sees that the volatility clusters if the ratio is close to one. As before, the red
lines mark the times of market turmoil as detected by our method based on Hawkes process intensities.
Interestingly, these correspond to local maxima of the chartist fraction even though this information
was not available to the dating method.

Hence, we observe the phenomenon of criticality in this model, also known from nonlinear
dynamical systems where tuning a parameter—in our case the ratio between chartists and
fundamentalists—destabilizes an attracting equilibrium of the system into a repelling one, leading to
rapid changes: a massive drop of stock prices. Indeed, Lux and Marchesi (2000) have shown that the
deterministic skeleton of the model exhibits a fixed point which loses stability when the fraction of
chartists becomes to high. A well known indicator of a system approaching such a critical transition
is critical slowing down. That is, if the system is disturbed, the recovery rate is getting slower. If we
translate this into the terms of the model by Lux and Marchesi (1999), this means that correcting
deviations of the stock price from its fundamental value takes longer if the ratio of chartists and
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fundamentalists approaches the previously mentioned threshold. Hence, an indicator which measures
the recovery rate provides insight about future possible market bursts.

Formally, critical slowing down leads to a characteristic scaling of the recovery rate, variance and
autocorrelation when a system approaches a critical transition (Scheffer et al. 2009). As measuring
the recovery rate directly requires repeatable perturbations to the system and autocorrelations tend
to be small in market returns, we focus on variance scaling alone. This is also justified as volatility
being large compared to mean returns and exhibits the most strongly visible patterns in market returns.
Under suitable regularity conditions, the variance σ2 scales as

σ2 ≈ (−τ)−α

where τ denotes the distance of the control parameter to the critical transition and the exponent
α depends on the type of instability (α = 0.5 for saddle-node and α = 1 for Hopf bifurcations)
(Meisel et al. 2015). It is common practice to assume that the distance to criticality reduces proportional
to the time to the critical transition, i.e., τ = t− tcrit. Furthermore, the increasing trend in variance close
to a critical transition is commonly detected by using a sliding window to estimate short-term variances
and computing Kendall’s rank correlation coefficient. Critical slowing down is then associated with a
strongly positive correlation of sliding variances. Unfortunately, this method has been shown to exhibit
very low power in detecting critical transitions (Boettiger and Hastings 2012) and will be of limited use
in our case where considerable noise is expected. Yet, as we search for a specific scaling, a likelihood
ratio test—which by the well-known Neyman–Pearson lemma constitutes the most powerful test for
simple hypothesis—can be derived. Thus, we define our indicator as

XLM(t) = log
p̂α(r(t− w + 1), . . . , r(t))
p̂0(r(t− w + 1), . . . , r(t))

where p̂0(r(t − w + 1), . . . , r(t)) and p̂α(r(t − w + 1), . . . , r(t)) denote the maximum likelihood
estimates for a null-model assuming constant variance and a critical slowing down model assuming
variance scaling as above. Both models are optimized over a window of w preceding returns and the
likelihood values are given as

p̂0(r(t− w + 1), . . . , r(t)) = max
σ

w−1

∏
i=0
N (rt−i; 0, σ)

p̂α(r(t− w + 1), . . . , r(t)) = max
σ,tc>t,α≥0

w−1

∏
i=0
N
(

rt−i; 0, σ
√
(tc − (t− i))−α

)
.

Note that the second model nests the first, i.e., with α = 0, and thus the the indicator XPP(t) is bounded
below by zero. Yet, large positive values indicate a much better fit of the critical slowing down model
compared to the null model and are therefore expected to precede market events.

2.2.3. Leverage Cycle

Aymanns and Farmer (2015) investigate an agent based model composed of a leveraged bank B
and a noise trader N which invest both into a single stock with price p(t) at time t. In the present context,
we only outline a simplified model which can be found in Section 4.2 of (Aymanns and Farmer 2015).
The bank invests only a fixed percentage amount wB ∈ (0, 1) of their capital into the stock while the
rest is saved in cash wc = 1−wB. The weight wN of capital which the noise traders invest into the stock
follows a stochastic process. At time t + 1 the bank perceives its portfolio risk σ(t + 1) according to

σ2(t + 1) = (1− δ)σ2(t) + δ

(
log
(

p(t)
p(t + 1)

))2
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with the risk perception parameter δ. According to its risk perception, the bank computes its target
leverage, that is, the ratio between total assets and equity of the bank, according to the formula

λ(t) = α(σ2(t) + σ2
0 )

b

where α and b denote two time independent parameters. Banks then expand or shrink their balance
sheet in order to match the desired target leverage. Details of the full process, i.e., on how the leverage
cycle effects asset prices, can be found in Aymanns and Farmer (2015).

Here, we simulated the model with parameters

E0 = 10, λ̄0 = 5, wB = 0.05, n0 = 0.1, ξ = 1.2, ρ = 0.9, η = 0.01

and
α = 0.1, b = −0.5, δ = 0.06

as detailed in Appendix A.2. α is interpreted as the risk appetite of the bank and b is the cyclicality
parameter. If b < 0, the bank is acting procyclical, that is, the bank’s leverage is stimulated by a low
risk perception. The case b > 0 is called contracyclical. The annotation comes from the fact that a
positive cyclicality parameter produces leverage cycles: the banks leverage steadily increases until
it drops dramatically. This drop in leverage comes along with a price crash of the traded asset and
the procedure starts over again. Since b < 0, leverage and risk perception are inverse proportional.
Hence, if the leverage is high, then risk perception is low and vice versa. Since risk perception can be
computed from previous market prices—it is nothing else than an exponentially weighted mean over
previous logarithmic returns—σ(t) provides an early warning indicator for future market crashes in
this model and we define

XAF(t) = σ2(t) .

Figure 4 shows a simulated return series from the leverage cycle model. Here, market crashes
correspond to huge negative returns—which are well detected as market events by our dating
method—and are preceded by low indicator values according to the model.

10,000 10,500 11,000 11,500 12,000 12,500 13,000

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.025

0.050

Figure 4. Return time series generated from the leverage cycle model. Market crashes are clearly
visible as strong negative returns and are reliably detected as market events (red) by our dating method.

2.3. Performance Evaluation

Having defined market events and model derived indicators, we now want to evaluate their
predictive performance. Obviously, a good indicator should signal market events, by adopting large
values ahead of each event. On the other hand, only few values of similar magnitude should occur if
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no event happened. This is especially important, as market events are rather rare—about one event
every five years—and could lead to a high number of false positive warning signals. In such a situation,
an early warning signal which never issues a warning, i.e., being utterly useless, could easily achieve
a lower overall error than a more sophisticated indicator as it never raises a false positive warning.
Thus, we need a more elaborate method in order to compare different indicators. Here, we use the
Receiver Operator Characteristic (ROC) which allows one to access how the indicator reveals information
about market events.

Assume that the indicator variable X(t) is used to predict market events d days into the future.
Then, we fire a warning signal if X(t) > δ for a threshold δ and compare the resulting binary series
with the actual series of market events Ym(t + d) shifted d days ahead. Now, we compute the rates
rc(δ) of correct predictions and r f (δ) of false positives:

rc =
#correct predictions

#events

=
∑t(X(t) > δ) ·Ym(t + d)

∑t Ym(t + d)

r f =
#false predictions

#nonevents

=
(X(t) > δ) · (1−Ym(t + d))

∑t(1−Ym(t + d))
.

The ROC curve then is the graph of rc over r f for different values δ, as illustrated in Figure 5.
The ROC curve is monotonically increasing from (0, 0) toward (1, 1). It illustrates the informativity of
an indicator in the following way: if the indicator is independent of actual market events, i.e., when no
warning is ever raised, the ROC is the diagonal from (0, 0) toward (1, 1) whereas a perfectly informative
warning signal corresponds to a ROC curve consisting of the points {(x, 1) : x ∈ (0, 1]}. Note that
the ROC curve can be below the diagonal when raised warnings are actually indicating nonevents
and vice-versa. Such a warning signal is obviously useful and informative but should be inverted,
i.e., the omission of a warning should be considered as signaling an event. A common method,
to summarize the information provided from the ROC curve is to compute the area under the curve
(AUC) score. Here, an AUC score of 0.5 identifies an uninformative indicator, whereas scores of 1 (or 0)
correspond to perfect detection of market events.
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Figure 5. Illustration of the receiver operator characteristic (ROC) curve: The left panel shows the
distribution of indicator values which either where followed by an event or not. A warning signal is
then raised if the indicator value exceeds a certain threshold. For each threshold, the fraction of correctly
predicted events as well as the fraction of false alarms is recorded. Thereby, as shown in the right panel,
the ROC curve is obtained. In the example, the indicator is informative with an AUC score of 0.89.
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3. Results

3.1. Early Warning Signals for Simulated Market Events

In this section we analyze the performance of the indicators for the various models, PP, LM and AF,
introduced above. In all three cases we simulated the models for 50,000 time steps and recorded the
last 16, 000 returns for further analysis, corresponding to roughly the number of trading days of
the S&P 500 data. Each model was simulated 100 times. See Appendix A.2 for further details on
these simulations.

For each series we have detected market events and then computed the ROC curve for the various
indicators. To summarize our results, we in turn computed the corresponding AUC score. Figure 6
shows the distribution of AUC scores obtained over 100 simulation runs for return series generated
according to the PP model. AUC scores are shown for predicting market events d = 1, 7 and 28 days
into the future (from top to bottom). Especially when predicting over short horizons (d = 1) the
PP indicator works almost perfectly and, as expected, low indicator values precede market events
giving rise to AUC scores close to zero. It appears that over larger horizons, none of the indicators is
predictive with all AUC scores clustering around 0.5.

Figure 7 shows the corresponding results on return time series simulated according to the LM
model. In this case, all indicators seem to be of similar quality with none being perfect. Especially
at larger time horizons there seems to be a slight edge for the LM indicator though. That the risk
perception indicator derived from the AF model exhibits a similar performance could be somewhat
expected as it, being a short term estimate of market volatility, also reacts quickly to raising volatility.

Figure 8 shows the corresponding results on return time series simulated according to the AF
model. In this case, the AF indicator shows almost perfect performance with low indicator values,
i.e., volatility, preceding market events. In contrast, the LM indicator looking for raising volatility is not
useful reflecting that the mechanism of the model is completely different. Interestingly, the PP indicator
is also predictive, but now with large indicator values preceding market events. The performance of
all indicators drops just slightly when predicting across larger time horizons.

Overall, the indicators work reasonable well—mostly almost perfectly—with respect to the model
they where designed for. In addition, on return series from other models they sometimes exhibit
reasonable performance but can nevertheless be well separated as their behavior is sufficiently different
across times series simulated from different models. We now turn to real market data.

3.2. Early Warning Signals for Real Market Events

Here, we investigate the performance of all indicators on the return series from the S&P 500
between 4 January 1950 and 30 December 2016 as well as on stocks of the Forbes 500 universe. Based on
availability, we selected 401 stocks for our experiments (see Appendix A.3).

Figure 9 shows the ROC curve of all indicators on the S&P 500 when predicting 1, 7 and 28 days
ahead (from top to bottom). In each case, the grey areas show the 95% confidence region of ROC
curves resulting from totally uninformative indicators. Thus, the performance of an indicator should
be considered as statistically significant at the 5% level to the extend its ROC stays outside this region.
According to this criterion, only the LM and AF indicators appear to be somewhat predictive for very
short time horizon of a single trading day. Interestingly, in contrast to the results on the AF model,
high values of the AF indicator are predictive. Thus, on the S&P 500 data, high or rising volatility
indicate the onset of market events.
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Figure 6. A kernel density plot of the distribution of AUC scores for the various indicators on 100 return
time series simulated according to the PP model. Results are for predicting events d = 1, 7 and 28 days
into the future (from top to bottom).
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Figure 7. A kernel density plot of the distribution of AUC scores for the various indicators on 100 return
time series simulated according to the LM model. Results are for predicting events d = 1, 7 and 28 days
into the future (from top to bottom).
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Figure 8. A kernel density plot of the distribution of AUC scores for the various indicators on 100 return
time series simulated according to the AF model. Results are for predicting events d = 1, 7 and 28 days
into the future (from top to bottom).
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ROC curve: Predicting 1 days ahead
LM Indicator: AUC = 0.67
PP Indicator: AUC = 0.38
AF Indicator: AUC = 0.70
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ROC curve: Predicting 7 days ahead
LM Indicator: AUC = 0.63
PP Indicator: AUC = 0.52
AF Indicator: AUC = 0.68
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Figure 9. ROC curves for the different indicators for the S&P 500 time series when predicting 1, 7 and
28 days ahead (from top to bottom). The grey areas show the 95% confidence region of ROC curves
resulting from totally uninformative indicators. Thus, the performance of an indicator should be
considered as statistically significant at the 5% level to the extent its ROC stays outside this region.
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To further investigate the predictive performance, we have in turn tested the indicators on stocks
of the Forbes 500 universe. Figure 10 shows the corresponding distribution of AUC scores obtained for
one day ahead predictions. Whereas the PP indicators performs close to change level, on average over
all stock tested, the other indicators shows some predictive power. Especially the AF indicator exhibits
a very good performance in some cases, closely followed by the LM indicator. Note that the relative
ranking of the indicators is most similar to the data simulated from the LM model. Nevertheless,
the AF indicator appears somewhat better and the PP indicator is clearly worse with no tendency
towards lower probabilities. In this respect, it appears that the structure of real market data is different
than the model generated return series.
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Figure 10. A kernel density plot of the histogram of areas beneath the ROC curves for the various
indicators for return time series of all stocks in the Forbes 500 index.

4. Conclusions

Starting from three econophysics models, each illustrating a different mechanism generating
clustered volatility, we have derived early warning indicators for predicting the onset of turbulent
market phases. In order to rigorously evaluate and compare all indicators, we have proposed a
novel method for dating the onset of volatility clusters, i.e., market events. To this end, we fit a
two-dimensional Hawkes process to tail returns and generate a market event if the intensity of the
Hawkes process exhibits a large jump. Using simulated as well as real market data we have visually
checked that this method produces market events that capture the intuitive notion of a volatility cluster
reasonable well.

Next, we have introduced the ROC curve in order to systematically evaluated all indicators.
These were then compared on simulated as well as real market data in terms of their AUC score.
We found that the indicators are able to accurately predict market events on simulated data, especially
on time series simulated from the model they were derived from. Furthermore, all indicators
clearly distinguished between data simulated from the different models and achieved their best
performance on data simulated from the same model they were derived from. Thus confirming our
idea that different mechanisms could be detected based on specific statistical signatures. In contrast,
the performance on actual market data is markedly lower and also more similar between the different
models. Yet, over very short time horizons high or rising volatility appears to be able to predict market
events to some extent, thus at least ruling out the mechanism based on low perceived risk. From this
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perspective, our findings confirm the results of Guttal et al. (2016) who found that financial crises
appear to be preceded by increasing volatility. They have not investigated the problem of false alarms
in a systematic fashion though. In this respect, our results substantiate their claims as the ROC curve
precisely relates the ability to detect actual events with the rate of false alarms. Note that an informative
signal, i.e., with a high AUC score, score would not be guaranteed to generate good trading returns,
e.g., when used in an investment strategy. Yet, the idea to derive trading signals from agent-based
models might be interesting to directly investigate in the future.

Overall, predicting the onset of market crashes—as attempted in this as well as other
studies—remains elusive. We believe that substantial progress on this problem requires first and
foremost a workable definition, ideally provided as an algorithm to allow large scale data screening,
of what constitutes a market crash or event that is to be predicted. Modern machine learning has
greatly advanced by relying on public data sets which allow for the systematic evaluation and compare
different models. In particular, the price offered by Netflix in 2014 has prompted many other companies
and academic institutions alike to open up challenging data sets to scientific research. With models
becoming more and more complex, it becomes increasingly difficult to identify significant differences
on purely empirical grounds. Thus, models need to be studied and evaluated from multiple angles
and over multiple data sets. We believe that our contribution of indirectly testing model predictions in
terms of indicators derived from instabilities, is valuable in this respect.
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Appendix A. Supporting Information

Appendix A.1. Hawkes Processes

Here we recall some basic definitions and results on Hawkes processes, following
Embrechts et al. (2011). For a more thorough treatment we refer the interested reader to the doctoral
thesis of Liniger (2009).

Consider a multivariate point process Nt with n components specified by a countable series
(ti, di, xi)i∈I . That means at time ti ∈ R the component di ∈ {1, . . . , n} jumps with mark value
xi > 0. Since we assume ti 6= tj if i 6= j, this implies that there are no simultaneous jumps of
several components. Hawkes himself introduced his processes in Hawkes (1971a, 1971b) via intensity
functions which is informally the derivative

λj(t) = lim
∆→0

∆−1E [Nt+∆ − Nt|Ft]

Definition A1. A Hawkes Process is a multivariate point process Nt whose intensity is defined as

λj(t) = ηj +
d

∑
k=1

θjk

∫
(−∞,t)×R

ωj(t− s)gk(x)Nk(ds× dx), t ∈ R

where ωj : R+ → R+, gk : R→ R+ and ηj, θjk ≥ 0.

The numbers θjk are called the branching coefficients or descendant parameters whereas ηj are called
immigration parameters. The n× n matrix Q = (`ij)i,j=1,...,n is the branching matrix. We call ωj the decay
functions which allow the following interpretation. Assume a jump occurred in component k at time
s and fix some t > s. The intensity of all other components j ∈ {1, . . . , n} at time t are increased
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by ωj(t− s). The functions gj are called impact functions and if there is a jump in component k with
mark value xk, the intensity of all other components is increased by gj(xk). The mark values xk for
each component are pairwise independently distributed with densities fk : R→ R which are called
mark densities. A mark density is called one-sided if its support contains only non-negative numbers.
The various functions are subject to the following normalizing conditions∫ ∞

0
ωj(t) dt = 1∫ ∞

−∞
γk(x) fk(x) dx = 1∫ ∞

0
tωj(t) dt < ∞

Spr(Q) < 1

for all j, k ∈ {1, . . . , n} where Spr denotes the spectral radius of Q, that is, the square root of the largest
eigenvalue of the matrix QTQ. If all these conditions are fulfilled, then there is a unique mulitvariate
point process Nt with intensity as in Definition A1—see theorem 1 of Liniger (2009).
In the present paper the parameters of a Hawkes process are estimated via a maximum likelihood fit
on data observed within a time period D = [T∗, T∗].

Definition A2. For all t ∈ D we define the compensator by

Λj(t) =
∫ t

T∗
λj(s) ds

= ηj(t− T∗) +
d

∑
k=1

θjk

∫
(−∞,t)×R

[ω̃j(t− u)− ω̃(T∗ − u)]gk(x) Nk(du× dx)

for j = 1, . . . , n with

ω̃j(t) =
∫ t

0
ωj(s) ds

with the convention ω̃j(t) = 0 if t < 0.

With these definitions the log-likelihood reads as

log L =
d

∑
j=1

∫
D×R

log λj(t) Nj(du× dx)

+
d

∑
j=1

∫
D×R

log f j(x)Nj(du× dx)−
d

∑
j=1

Λj(T∗) .

Note that the integrands depend on either the jump times ti or mark values xi but not both.
Furthermore, assuming exponential decay functions ωj(t) the integrals can be efficiently computed
in a recursive fashion as outlined in the main text. In turn, if the parameters are fitted, one can
simulate a Hawkes process by means of the Ogata’s modified thinning algorithm (Ogata and Akaike 1981).
An adaption of this algorithm to Hawkes processes as well as further details on numerical methods
for maximum likelihood fitting are provided by Liniger (2009).

Appendix A.2. Model Details

PP model

The model by Patzelt and Pawelzik (2013) consists of N agents: Ns speculators and Np producers.
Each agent i possesses at day t two types of assets called money Mi(t) and stocks Si(t). The price of
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stocks is p(t) = δ(t)/ζ(t) where δ(t) is the demand of stocks and ζ(t) their supply which shall be
defined shortly.

Agents base their trading decisions on public information states µ(t) which can be endogenous or
exogenous information. If µ(t) is endogenous, it is derived from the signs sgn(rt−K), . . . , sgn(rt−1)

of the K preceding returns with the sign function sgn(x) = 1 if x ≥ 0 and −1 else. Hence, there are
2K different states encoded by binary sequences of length K. In the exogeneous case µ(t) is simply
drawn randomly from the uniform distribution over the 2K binary sequences of length K. Each agent’s
i strategy is determined by a strategy function σi : {0, 1}K → {0, 1}. If σi(µ(t)) = 1 then the agent i
buys stocks

mi(t) = γMi(t)

si(t) = 0

by trading a fraction gamma of its current monetary wealth Mi(t). If σi(µ(t)) = 0 then the agent i sells
a corresponding fraction of its stocks

mi(t) = 0

si(t) = γSi(t) .

Whereas the wealth of speculators is updated according to their buy and sell decision, producers have
a fixed and unchanging wealth. Note that without external producers, wealth would be conserved and
exchanged between speculators in a zero-sum fashion. Thus, with external producers their provided
resources are exploited by the speculators and redistributed according to the effectiveness of their
trading strategy.

Demand and supply are the sums of all buy and sell orders, respectively,

δ(t) =
N

∑
i=1

mi(t) + ε

ζ(t) =
N

∑
i=1

si(t) + ε

where ε = 1× 10−10 is a small positive number which ensures δ(t), ζ(t) > 0 and therefore well defined
prices and returns.

For the simulation studies, we have run the model with parameters as in Equation (1) for
50,000 time steps from random initial conditions. Then, we discarded the initial part of the generated
return series and recorded the last 16, 000 returns. This corresponds to about 64 years of simulated data,
matching the empirical record for the S&P 500, from the stationary distribution of the model dynamics.

LM model

The model by Lux & Marchesi consists of N speculators. These either adhere to chartist or
fundamental strategies. At each time point, the number of chartists and fundamentalists will be
denoted by nc and n f respectively, i.e., N = nc + n f . Furthermore, the model distinguishes between
optimistic and pessimistic chartists. Thus, nc = n+ + n− with n+ optimists and n− pessimists.

The dynamics of the model is formulated in continuous time and consists of switching dynamics
as follows:

1. Chartists switch between being optimistic or pessimistic. This decision is based on the price
change ṗ = dp

dt —approximated as pt−pt−∆t
∆t in simulations—and the opinion index x ∈ [−1, 1]

capturing the prevailing population opinion, i.e.,
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x =
n+ − n−

nc
=

n+ − n−
n+ + n−

.

Chartists then switch with rate π+− from the pessimistic to the optimistic camp and π−+ in the
reverse direction. Formally, the switching rates are given as

π+− = ν1
nc

N
eU1

π−+ = ν1
nc

N
e−U1

with U1 = α1x + α2
ṗ
ν1

and parameters ν1, α1 and α2.
2. Speculators also switch between fundamental and chartist strategies. Here, the decision is based

on the excess profits gained by chartists (r + ṗ)/p + R and the difference between realized p and
fundamental price p f . In this context, r denotes nominal dividends and R average real returns
from other investments. It is assumed that these are priced at fair value, i.e., r/p f = R.

Switching rates are now given by

π+ f = ν2
n+

N
eU2,1

π f+ = ν2
n f

N
e−U2,1

π− f = ν2
n−
N

eU2,2

π f− = ν2
n f

N
e−U2,2

with

U2,1 = α3

(
(r +

ṗ
ν2
)/p− R− s

∣∣∣∣ p f − p
p

∣∣∣∣)
and U2,2 = α3

(
R− (r +

ṗ
ν2
)/p− s

∣∣∣∣ p f − p
p

∣∣∣∣) .

Prices are then determined from the excess demand of chartists EDc = (n+ − n−)tc, i.e., optimists buy
and pessimists sell a fixed number tc of assets, and fundamentalists ED f = n f γ(p f − p) which react
to over- or underpricing with intensity γ.

The auctioneer then observes the total demand ED = EDc + ED f with a small amount of noise µ

and adjusts prices up or down by ∆p± 0.01 with rates

π↑p = max {0, β(ED + µ)}
π↓p = −min {0, β(ED + µ)}

and reaction speed β.
The model is then simulated by discretizing the continuous time jump dynamics,

i.e., transition rates are rescaled as
√

∆tπ. Furthermore, to avoid the absorbing boundaries transitions
are prevented whenever n+, n− or n f would fall below a minimum of 4 speculators. Overall,
following Lux and Marchesi (2000) we have used the following parameters1

1 In order to obtain volatility clustering, we had to increase β ten-fold compared to the original reference. This adjustment
was stable across three independent implementations of the model in Python, Haskell and C++ which all produced
identical results.
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N = 500, ν1 = 3, ν2 = 2, β = 60, Tc(≡ Ntc) = 10, Tf (≡ Nγ) = 5

α1 = 0.6, α2 = 0.2, α3 = 0.5, p f = 10, r = 0.004, R = 0.0004, s = 0.75

and µ ∼ N (0, 0.05). As before, we simulated the model for 50,000 time steps and discarded an initial
transient, retaining only the last 16,000 returns.

AF model

Aymans & Farmer consider an agent based model illustrating the interplay between a leveraged
bank B and a noise trader N investing into a single stock. The bank strives to maintain a target leverage
λ̄(t) = α(σ(t)2 + σ2

0 )
b based on its perceived riskiness of the stock2. To this end, the bank adjusts its

stock holdings by ∆B(t) = λ̄(t)(A(t)−L(t))−A(t). Here, A(t) = n(t)p(t)/wB and L(t) denote the
value of its assets and liabilities respectively. Note that the assets are derived from the bank targeting
a portfolio weight wB and owning a fraction n(t) of stock priced at p(t) at time t. The model is then
completed with a dynamics for the perceived risk and balance sheet constraints for the liabilities,
stock ownership fraction and price:

σ2(t + 1) = (1− δ)σ2(t) + δ

(
log

p(t)
pt−1

)2

L(t + 1) = L(t) + ∆B(t)

n(t + 1) =
wB(n(t)p(t + 1) + cB(t) + ∆B(t))

p(t + 1)

p(t + 1) =
wB(cB(t) + ∆B(t)) + wN(t + 1)cN(t)

1− wBn(t)− (1− n(t))wN(t)
.

Note that this dynamics is mainly driven by the desired change ∆B(t) in the bank’s balance sheet.
Indeed, if ∆B(t) > 0 the bank borrows additional funds for investing into the stock market.
If ∆B(t) < 0 the bank sells assets and pays back some its liabilities. The stock ownership fraction n(t)
and the stock price p(t) then adjust to the demand of bank and noise trader. Here it is assumed that
the portfolio weight wN(t) of the noise trader follows a mean-reverting random walk

wN(t + 1) = wN(t) + ρ(0.5− wN(t))wN(t) + ηwN(t)dW

where ρ determines the speed of mean-reversion and η denotes the noise standard deviation.
In turn, the cash holdings cB(t) and cN(t) of the bank and the noise trader are updated as

cB(t) = (1− wB)n(t)p(t)/wB + dE(t)

cN(t) = (1− wN(t))(1− n(t))p(t)/wN(t)− dE(t)

dE(t) = ξ(E0 − E(t))

where it is assumed that cash is redistributed in order to maintain an equity target E0 for the bank3.
In particular, as detailed in (Aymanns and Farmer 2015) this ensures that equity in the system
is conserved.

2 Aymans & Farmer also discuss a policy rule for adapting α(t). Since this does not substantially change the qualitative
dynamics of the model we stick with α(t) ≡ α for simplicity.

3 The bank’s equity at time t is given as E(t) = A(t)−L(t).
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Here, we simulated the model with parameters

E0 = 10, λ̄0 = 5, wB = 0.05, n0 = 0.1, ξ = 1.2, ρ = 0.9, η = 0.01

as in (Aymanns and Farmer 2015). Furthermore, the risk parameters have been set to α = 0.1, b = −0.5
and δ = 0.06 which is often used for running volatility estimation in risk management. Note that
b < 0 leads to procyclic leverage adjustment as the bank deleverages when the perceived risk rises,
i.e., sells assets into a more volatile market. As before, we simulated the model for 50,000 time steps
retaining the last 16, 000 returns.

Appendix A.3. Data Selection

Stock prices have been downloaded from Yahoo finance. From the Forbes 500 list (as of end
2016) 401 tickers were available and have been downloaded. Overall, all available time points of the
following tickers have been used in our experiments:

• AA
• AAPL
• ABB
• ABN
• ACN
• ADBE
• ADI
• ADM
• ADP
• AEE
• AEG
• AEP
• AES
• AET
• AFL
• A
• AGN
• AHC
• AIB
• AIG
• AKZOY
• AL
• ALL
• AMAT
• AMD
• AMGN
• AMP
• AMT
• AMX
• AMZN
• ANZ
• AOC
• APA
• APC
• APD
• ASML
• AT
• AU
• AVP
• AXP
• AZN

• BAC
• BA
• BAX
• BBBY
• BBD
• BBL
• BBT

• BBV
• BBY
• BCE
• BCM
• BCS
• BDX
• BEN
• BHI
• BHP
• BIIB
• BK
• BMO
• BMY
• BNS
• BOX
• BP
• BR
• BRG
• BRKA
• BRKB
• BSC
• BSX
• BSY
• BT
• BTI
• BUD

• CA
• CAG
• CAH
• CAJ
• CAT
• CB
• CBS
• CCJ
• CCL
• CCU
• CEG
• CELG
• CEO
• CFC
• C
• CHK
• CHL
• CHT
• CHU
• CI
• CIT
• CL

• CMCSA
• CME
• CMX
• CN
• CNI
• CNQ
• COF
• COH
• COP
• COST
• CPB
• CSCO
• CSR
• CSX
• CUK
• CVS
• CVX
• CX

• DB
• DCM
• DD
• DE
• DEO
• D
• DGX
• DHI
• DHR
• DIS
• DO
• DOW
• DTV
• DUK
• DVN

• EBAY
• ECA
• ED
• EDP
• EFA
• E
• EIX
• ELE
• EMR
• ENB
• EN
• EOG
• EON
• EQR

• ESRX
• ETR
• EWJ
• EXC

• FCX
• FDC
• FDX
• FE
• F
• FITB
• FO
• FPL
• FRE
• FRX
• FUJIY

• GCI
• GD
• GDW
• GE
• GFI
• GGP
• GILD
• GIS
• GLH
• GLW
• GM
• GNW
• GOOG
• GPS
• GS
• GSK

• HAL
• HBC
• HCA
• HD
• HDI
• HMC
• HON
• HOT
• HPQ

• IBM
• IBN
• IGT
• IMI
• INFY

• ING
• INTC
• IP
• IR
• ITU
• ITW
• IVV
• IX

• JCI
• JNJ
• JNPR
• JPM
• JWN

• KB
• KEP
• KEY
• K
• KLAC
• KMB
• KMG
• KMI
• KNBWY
• KPN
• KR
• KSS
• KTC
• KYO

• L
• LLY
• LM
• LMT
• LOW
• LPL
• LTR
• LUV
• LUX
• LVS
• LYG

• MAR
• MAS
• MBT
• MC
• MCK
• MCO
• MDT

• MER
• MET
• MFC
• MGM
• MITSY
• MMC
• MMM
• MO
• MON
• MOT
• MRK
• MRO
• MRVL
• MS
• MSFT
• MTB
• MTU
• MUR
• MXIM

• NBR
• NCC
• NE
• NEM
• NGG
• NHY
• NKE
• NMR
• NOC
• NOK
• NOV
• NSANY
• NSC
• NTT
• NUE
• NVO
• NVS
• NWS
• NXY

• ODP
• OMC
• ORCL
• OTE
• OXY

• PBRA
• PBR
• PCAR

• PCG
• PCU
• PCZ
• PEG
• PEP
• PFE
• PG
• PGR
• PHG
• PHM
• PKX
• PLD
• PNC
• PPL
• PRU
• PSO
• PT
• PTR
• PUK
• PX

• QCOM

• RAI
• RDSA
• RDSB
• RF
• RG
• RIG
• RIO
• ROK
• RTN
• RY

• SAP
• SCHW
• S
• SGP
• SHG
• SHLD
• SHR
• SI
• SKM
• SLB
• SLF
• SLM
• SMP
• SNDK
• SNE
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• SNY
• SO
• SPG
• SPI
• SPLS
• SPY
• SRE
• SSL
• STA
• STI
• STJ

• STM
• STO
• STT
• STX
• SU
• SUN
• SYK
• SYMC
• SYT
• SYY

• TD

• TEF
• TEVA
• T
• TGT
• TIA
• TI
• TJX
• TKA
• TKC
• TKG
• TLD

• TLK
• TM
• TMX
• TOT
• TROW
• TRP
• TS
• TSM
• TVE
• TWX
• TXN

• TXT
• TYC

• UBS
• UL
• UMC
• UN
• UNH
• UPS
• USB
• UTX

• V

• VLO
• VNO
• VOD
• VZ

• WB
• WBK
• WFC
• WF
• WFT
• WIT
• WMB

• WM
• WMT
• WPPGY
• WY

• XL
• XOM
• XRX

• YHOO
• YPF
• YUM
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