Please use this identifier to cite or link to this item:
Ren, Rui
Lu, Meng-Jou
Li, Yingxing
Härdle, Wolfgang
Year of Publication: 
Series/Report no.: 
IRTG 1792 Discussion Paper No. 2021-008
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series", Berlin
The Financial Risk Meter (FRM) is an established mechanism that, based on conditional Value at Risk (VaR) ideas, yields insight into the dynamics of network risk. Originally, the FRM has been composed via Lasso based quantile regression, but we here extend it by incorporating the idea of expectiles, thus indicating not only the tail probability but rather the actual tail loss given a stress situation in the network. The expectile variant of the FRM enjoys several advantages: Firstly, the coherent and multivariate tail risk indicator conditional expectile-based VaR (CoEVaR) can be derived, which is sensitive to the magnitude of extreme losses. Next, FRM index is not restricted to an index compared to the quantile based FRM mechanisms, but can be expanded to a set of systemic tail risk indicators, which provide investors with numerous tools in terms of diverse risk preferences. The power of FRM also lies in displaying FRM distribution across various entities every day. Two distinct patterns can be discovered under high stress and during stable periods from the empirical results in the United States stock market. Furthermore, the framework is able to identify individual risk characteristics and capture spillover effects in a network.
expectile lasso regression
network analysis
Financial Risk Meter
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.