Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/227828
Authors: 
Duman, Papatya
Trockel, Walter
Year of Publication: 
2020
Series/Report no.: 
Center for Mathematical Economics Working Papers No. 632
Abstract: 
We extend the analysis of van Damme (1987, Section 7.5) of the famous smoothing demand in Nash (1953) as an argument for the singular stability of the symmetric Nash bargaining solution among all Pareto efficient equilibria of the Nash demand game. Van Damme's analysis provides a clean mathematical framework where he substantiates Nash's conjecture by two fundamental theorems in which he proves that the Nash solution is among all Nash equilibria of the Nash demand game the only one that is H-essential. We show by generalizing this analysis that for any asymmetric Nash bargaining solution a similar stability property can be established that we call H»-essentiality. A special case of our result for » = 1/2 is H1/2-essentiality that coincides with van Damme's H-essentiality. Our analysis deprives the symmetric Nash solution equilibrium of Nash's demand game of its exposed position and fortifies our conviction that, in contrast to the predominant view in the related literature, the only structural difference between the asymmetric Nash solutions and the symmetric one is that the latter one is symmetric. While our proofs are mathematically straightforward given the analysis of van Damme (1987), our results change drastically the prevalent interpretation of Nash's smoothing of his demand game and dilute its conceptual importance.
Subjects: 
2-person bargaining games
α-symmetric Nash solution
Nash demand game
Nash smoothing of games
Hα-essential Nash equilibrium
JEL: 
B16
C71
C72
C78
D5
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
File
Size
278.87 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.