Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/219179
Authors: 
Hao, Yiping
Wu, Zhijun
Year of Publication: 
2018
Citation: 
[Journal:] Games [ISSN:] 2073-4336 [Volume:] 9 [Year:] 2018 [Issue:] 3 [Pages:] 1-15
Abstract: 
The evolution of social or biological species can be modeled as an evolutionary game with the equilibrium strategies of the game as prediction for the ultimate distributions of species in population, when some species may survive with positive proportions, while others become extinct. We say a strategy is dense if it contains a large and diverse number of positive species, and is sparse if it has only a few dominant ones. Sparse equilibrium strategies can be found relatively easily, while dense ones are more computationally costly. Here we show that by formulating a 'complementary' problem for the computation of equilibrium strategies, we are able to reduce the cost for computing dense equilibrium strategies much more efficiently. We describe the primary and complementary algorithms for computing dense as well as sparse equilibrium strategies, and present test results on randomly generated games as well as a more biologically related one. In particular, we demonstrate that the complementary algorithm is about an order of magnitude faster than the primary algorithm to obtain the dense equilibrium strategies for all our test cases.
Subjects: 
evolutionary games
Nash equilibrium
Shapley-Snow algorithm
dense vs. sparse strategies
biodiversity
Persistent Identifier of the first edition: 
Creative Commons License: 
https://creativecommons.org/licenses/by/4.0/
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.