Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/217173 
Erscheinungsjahr: 
2019
Quellenangabe: 
[Journal:] Quantitative Economics [ISSN:] 1759-7331 [Volume:] 10 [Issue:] 4 [Publisher:] The Econometric Society [Place:] New Haven, CT [Year:] 2019 [Pages:] 1495-1536
Verlag: 
The Econometric Society, New Haven, CT
Zusammenfassung: 
This paper presents identification and estimation results for a flexible state space model. Our modification of the canonical model allows the permanent component to follow a unit root process and the transitory component to follow a semiparametric model of a higher-order autoregressive-moving-average (ARMA) process. Using panel data of observed earnings, we establish identification of the nonparametric joint distributions for each of the permanent and transitory components over time. We apply the identification and estimation method to the earnings dynamics of U.S. men using the Panel Survey of Income Dynamics (PSID). The results show that the marginal distributions of permanent and transitory earnings components are more dispersed, more skewed, and have fatter tails than the normal and that earnings mobility is much lower than for the normal. We also find strong evidence for the existence of higher-order ARMA processes in the transitory component, which lead to much different estimates of the distributions of and earnings mobility in the permanent component, implying that misspecification of the process for transitory earnings can affect estimated distributions of the permanent component and estimated earnings dynamics of that component. Thus our flexible model implies earnings dynamics for U.S. men different from much of the prior literature.
Schlagwörter: 
Earnings dynamics
semiparametric estimation
state space model
JEL: 
C14
C23
J30
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
682.93 kB





Publikationen in EconStor sind urheberrechtlich geschützt.