Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/202674
Authors: 
Kemeny, Tom
Nathan, Max
Almeer, Bader
Year of Publication: 
2017
Series/Report no.: 
Birmingham Business School Discussion Paper Series 2017-01
Abstract: 
Innovative, high-technology activities are seen as motors of development, with knock-on effects throughout their local economies. Such activities tend to organise networks that span beyond atomized firms, creating 'ecosystems' of mutual dependence as well as competition. However, such ecosystems remain poorly understood, which in turn constrains the effectiveness of any policy response. This first-steps paper uses the unique, user-generated Crunchbase dataset to fill some of these gaps. With rich information on founders, workers, products and early stage investment activity, Crunchbase has great potential for ecosystem understanding. Like many 'big data' resources, however, Crunchbase requires cleaning and validation to make it suitable for robust analysis. We develop a novel approach to gapfill location data in Crunchbase, exploiting DNS/IP address information, and run a series of tests on a raw sample of 225,000 company-level observations covering the US, UK and Canada. We provide initial descriptive results, and set out steps for further research.
Subjects: 
cities
clusters
technology
innovation ecosystems
big data
Crunchbase
URL of the first edition: 
Creative Commons License: 
https://creativecommons.org/licenses/by-sa/2.5/
Document Type: 
Working Paper

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.