Please use this identifier to cite or link to this item:
Ferrari, Giorgio
Year of Publication: 
Series/Report no.: 
Center for Mathematical Economics Working Papers No. 592
Bielefeld University, Center for Mathematical Economics (IMW), Bielefeld
Reflected diffusions naturally arise in many problems from applications ranging from economics and mathematical biology to queueing theory. In this paper we consider a class of infinite time-horizon singular stochastic control problems for a general onedimensional diffusion that is reflected at zero. We assume that exerting control leads to a state-dependent instantaneous reward, whereas reflecting the diffusion at zero gives rise to a proportional cost with constant marginal value. The aim is to maximize the total expected reward, minus the total expected cost of reflection. We show that depending on the properties of the state-dependent instantaneous reward we can have qualitatively different kinds of optimal strategies. The techniques employed are those of stochastic control and of the theory of linear diffusions.
reflected one-dimensional diffusions
singular stochastic control
variational inequality
optimal stopping
optimal dividend
optimal harvesting
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.