Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/184994
Authors: 
Groll, Andreas
Hambuckers, Julien
Kneib, Thomas
Umlauf, Nikolaus
Year of Publication: 
2018
Series/Report no.: 
Working Papers in Economics and Statistics 2018-16
Abstract: 
For numerous applications it is of interest to provide full probabilistic forecasts, which are able to assign probabilities to each predicted outcome. Therefore, attention is shifting constantly from conditional mean models to probabilistic distributional models capturing location, scale, shape (and other aspects) of the response distribution. One of the most established models for distributional regression is the generalized additive model for location, scale and shape (GAMLSS). In high dimensional data set-ups classical fitting procedures for the GAMLSS often become rather unstable and methods for variable selection are desirable. Therefore, we propose a regularization approach for high dimensional data set-ups in the framework for GAMLSS. It is designed for linear covariate effects and is based on L1-type penalties. The following three penalization options are provided: the conventional least absolute shrinkage and selection operator (LASSO) for metric covariates, and both group and fused LASSO for categorical predictors. The methods are investigated both for simulated data and for two real data examples, namely Munich rent data and data on extreme operational losses from the Italian bank UniCredit.
Subjects: 
GAMLSS
distributional regression
model selection
LASSO
fused LASSO
JEL: 
C13
C15
C18
Document Type: 
Working Paper

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.