Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/167940 
Autor:innen: 
Erscheinungsjahr: 
2015
Quellenangabe: 
[Journal:] Games [ISSN:] 2073-4336 [Volume:] 6 [Issue:] 3 [Publisher:] MDPI [Place:] Basel [Year:] 2015 [Pages:] 175-190
Verlag: 
MDPI, Basel
Zusammenfassung: 
For the iterated Prisoner's Dilemma there exist good strategies which solve the problem when we restrict attention to the long term average payoff. When used by both players, these assure the cooperative payoff for each of them. Neither player can benefit by moving unilaterally to any other strategy, i.e., these provide Nash equilibria. In addition, if a player uses instead an alternative which decreases the opponent's payoff below the cooperative level, then his own payoff is decreased as well. Thus, if we limit attention to the long term payoff, these strategies effectively stabilize cooperative behavior. The existence of such strategies follows from the so-called Folk Theorem for supergames, and the proof constructs an explicit memory-one example, which has been labeled Grim. Here we describe all the memory-one good strategies for the non-symmetric version of the Prisoner's Dilemma. This is the natural object of study when the payoffs are in units of the separate players' utilities. We discuss the special advantages and problems associated with some specific good strategies.
Schlagwörter: 
Prisoner's Dilemma
stable cooperative behavior
iterated play
Markov strategies
good strategies
individual utility
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
209.65 kB





Publikationen in EconStor sind urheberrechtlich geschützt.