Please use this identifier to cite or link to this item:
Khalid, Azfar
Kirisci, Pierre
Ghrairi, Zied
Thoben, Klaus-Dieter
Pannek, Jürgen
Year of Publication: 
[Journal:] Logistics Research [ISSN:] 1865-0368 [Volume:] 9 [Year:] 2016 [Issue:] 1 [Pages:] 1-15
The paper identifies the need for human robot collaboration for conventional light weight and heavy payload robots in future manufacturing environment. An overview of state of the art for these types of robots shows that there exists no solution for human robot collaboration. Here, we consider cyber physical systems, which are based on human worker participation as an integrated role in addition to its basic components. First, the paper identifies the collaborative schemes and a formal grading system is formulated based on four performance indicators. A detailed sensor catalog is established for one of the collaboration schemes, and performance indices are computed with various sensors. This study reveals an assessment of best and worst possible ranges of performance indices that are useful in the categorization of collaboration levels. To illustrate a possible solution, a hypothetical industrial scenario is discussed in a production environment. Generalizing this approach, a design methodology is developed for such human robot collaborative environments for various industrial scenarios to enable solution implementation.
Cyber physical system
Human robot collaboration
Collaborative robotics
Persistent Identifier of the first edition: 
Creative Commons License:
Document Type: 
Social Media Mentions:


Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.