Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/157438
Authors: 
Hafezalkotob, Ashkan
Haji-Sami, Elham
Omrani, Hashem
Year of Publication: 
2015
Citation: 
[Journal:] Journal of Industrial Engineering International [ISSN:] 2251-712X [Volume:] 11 [Year:] 2015 [Pages:] 199-208
Abstract: 
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based upon the discrete robust optimization approaches proposed by Mulvey et al. (1995) that utilizes probable scenarios to capture the effect of ambiguous data in the case study. Our primary concern in this research is evaluating electricity distribution companies under uncertainty about input/output data. To illustrate the ability of proposed model, a numerical example of 38 Iranian electricity distribution companies is investigated. There are a large amount ambiguous data about these companies. Some electricity distribution companies may not report clear and real statistics to the government. Thus, it is needed to utilize a prominent approach to deal with this uncertainty. The results reveal that the RDEA model is suitable and reliable for target setting based on decision makers (DM's) preferences when there are uncertain input/output data.
Subjects: 
Data envelopment analysis
Discrete uncertain data
RDEA
Robust optimization
Persistent Identifier of the first edition: 
Creative Commons License: 
http://creativecommons.org/licenses/by/2.0/
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.