Please use this identifier to cite or link to this item:
Masten, Matthew
Year of Publication: 
Series/Report no.: 
cemmap working paper, Centre for Microdata Methods and Practice CWP25/15
This paper considers a classical linear simultaneous equations model with random coefficients on the endogenous variables. Simultaneous equations models are used to study social interactions, strategic interactions between firms, and market equilibrium. Random coefficient models allow for heterogeneous marginal effects. I show that random coefficient seemingly unrelated regression models with common regressors are not point identified, which implies random coefficient simultaneous equations models are not point identified. Important features of these models, however, can be identified. For two-equation systems, I give two sets of sufficient conditions for point identification of the coefficients' marginal distributions conditional on exogenous covariates. The first allows for small support continuous instruments under tail restrictions on the distributions of unobservables which are necessary for point identification. The second requires full support instruments, but allows for nearly arbitrary distributions of unobservables. I discuss how to generalize these results to many equation systems, where I focus on linear-in-means models with heterogeneous endogenous social interaction effects. I give sufficient conditions for point identification of the distributions of these endogenous social effects. I suggest a nonparametric kernel estimator for these distributions based on the identification arguments. I apply my results to the Add Health data to analyze peer effects in education.
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.