Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/130002
Authors: 
Giacomini, Raffaella
Kitagawa, Toru
Year of Publication: 
2014
Series/Report no.: 
cemmap working paper, Centre for Microdata Methods and Practice CWP45/14
Abstract: 
We propose a method for conducting inference on impulse responses in structural vector autoregressions (SVARs) when the impulse response is not point identified because the number of equality restrictions one can credibly impose is not sufficient for point identification and/or one imposes sign restrictions. We proceed in three steps. We first define the object of interest as the identified set for a given impulse response at a given horizon and discuss how inference is simple when the identified set is convex, as one can limit attention to the set's upper and lower bounds. We then provide easily verifiable conditions on the type of equality and sign restrictions that guarantee convexity. These cover most cases of practical interest, with exceptions including sign restrictions on multiple shocks and equality restrictions that make the impulse response locally, but not globally, identified. Second, we show how to conduct inference on the identified set. We adopt a robust Bayes approach that considers the class of all possible priors for the non-identified aspects of the model and delivers a class of associated posteriors. We summarize the posterior class by reporting the "posterior mean bounds", which can be interpreted as an estimator of the identified set. We also consider a "robustified credible region" which is a measure of the posterior uncertainty about the identified set. The two intervals can be obtained using a computationally convenient numerical procedure. Third, we show that the posterior bounds converge asymptotically to the identified set if the set is convex. If the identified set is not convex, our posterior bounds can be interpreted as an estimator of the convex hull of the identified set. Finally, a useful diagnostic tool delivered by our procedure is the posterior belief about the plausibility of the imposed identifying restrictions.
Subjects: 
Partial causal ordering
Ambiguous beliefs
Posterior bounds
Credible region
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
File
Size
514.54 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.