Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/116138 
Erscheinungsjahr: 
2003
Schriftenreihe/Nr.: 
43rd Congress of the European Regional Science Association: "Peripheries, Centres, and Spatial Development in the New Europe", 27th - 30th August 2003, Jyväskylä, Finland
Verlag: 
European Regional Science Association (ERSA), Louvain-la-Neuve
Zusammenfassung: 
The demand for air travel worldwide continues to grow at a rapid rate, especially in Europe and the United States. In Europe, the demand exceeded predictions with a real annual growth of 7.1% in the period 1985-1990, against a prediction of 2.4%. By the year 2010, the demand is expected to double from the 1990 level. Within the UK international scheduled passenger traffic is predicted to increase, on average, by 5.8 per cent per year between 1999 and 2003. The demand has not been matched by availability of capacity. In Western Europe many of the largest airports suffer from runway capacity constraints. Europe also suffers from an en-route airspace capacity constraint, which is determined by the workload of the air traffic controllers, i.e. the physical and mental work that controllers must undertake to safely conduct air traffic under their jurisdiction through en-route airspace. The annual cost to Europe due to air traffic inefficiency and congestion in en-route airspace is estimated to be 5 billion US Dollars, primarily due to delays caused by non-optimal route structures and reduced productivity of controllers due to equipment inefficiencies. Therefore, to in order to decrease the total delay, an increase in en-route capacity is of paramount importance. At a global scale and in the early 1980s, the International Civil Aviation Organisation (ICAO) recognised that the traditional air traffic control (ATC) systems would not cope with the growth in demand for capacity. Consequently new technologies and procedures have been proposed to enable ATC to cope with this demand, e.g. satellite-based system concept to meet the future civil aviation requirements for communication, navigation and surveillance/ air traffic management (CNS/ATM). In Europe, the organisation EUROCONTROL (established in 1960 to co-ordinate European ATM) proposed a variety of measures to increase the capacity of en-route airspace. A key change envisaged is the increasing delegation of responsibilities for control to flight crew, by the use of airborne separation assurance between aircraft, leading eventually to ?free flight? airspace. However, there are major concerns regarding the safety of operations in ?free flight? airspace. The safety of such airspace can be investigated by analysing the factors that affect conflict occurrence, i.e. a loss of the prescribed separation between two aircraft in airspace. This paper analyses the factors affecting conflict occurrence in current airspace and future free flight airspace by using a simulation model of air traffic controller workload, the RAMS model. The paper begins with a literature review of the factors that affect conflict occurrence. This is followed by a description of the RAMS model and of its use in this analysis. The airspace simulated is the Mediterranean Free Flight region, and the major attributes of this region and of the traffic demand patterns are outlined next. In particular a day's air traffic is simulated in the two airspace scenarios, and rules for conflict detection and resolution are carefully defined. The following section outlines the framework for analysing the output from the simulations, using negative binomial (NB) and generalised negative binomial (GNB) regression, and discusses the estimation methods required. The next section presents the results of the regression analysis, taking into account the spatio-temporal nature of the data. The following section presents an analysis of the spatial and temporal pattern of conflicts in the two airspace scenarios across a day, highlighting possible metrics to indicate this. The paper concludes with future research directions based upon this analysis.
Dokumentart: 
Conference Paper

Datei(en):
Datei
Größe
262.12 kB





Publikationen in EconStor sind urheberrechtlich geschützt.