Please use this identifier to cite or link to this item:
Schröder, Andreas
Bracke, Maximilian
Year of Publication: 
Series/Report no.: 
DIW Discussion Papers 1250
This article presents an integrated electricity dispatch and load flow model with endogenous electricity generation capacity expansion. The target is to quantify generation capacity requirements for 2030 and where within Central Europe it shall be ideally placed when taking into account the projected grid structure. We explicitly model the interdependence between grid operation and power plant placing as we investigate the contribution of centralized power plant placement on reducing the need for grid expansion. The application focuses on Germany and its neighbors and reference is made to recently published plans on grid expansion (TSO 2012). We adopt the perspective of a welfare maximizing system planner and thus determine capacity expansion levels as first-best benchmark. Results show that optimal capacity expansion levels are much lower than previous studies indicate (e.g. dena (2008); EC (2011); EWI et al. (2010); Maurer et al. (2012)). We also show that the need for grid expansion can be reduced by the appropriate placing of just a few Combined Cycle Gas Turbine (CCGT) power plants as well as the use of storage and Demand-Side-Management. The presence of intra-national HVDC lines as proposed in the Grid Development Plan of 2012 (TSO 2012) is found to significantly reduce overall congestion and the need for back-up power plants. However, the contribution of the proposed HVDC lines varies greatly from project to project, calling for a prioritization of plans.
network planning
renewable energies
electricity markets
capacity investment
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.