Please use this identifier to cite or link to this item:
Meitz, Mika
Saikkonen, Pentti
Year of Publication: 
Series/Report no.: 
SSE/EFI Working Paper Series in Economics and Finance 632
This paper studies the stability of nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a nonlinear first order generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. Conditions under which the model is stable in the sense that its Markov chain representation is geometrically ergodic are provided. This implies the existence of an initial distribution such that the process is strictly stationary and beta-mixing. Conditions under which the stationary distribution has finite moments are also given. The results cover several nonlinear specifications recently proposed for both the conditional mean and conditional variance.
Document Type: 
Working Paper

Files in This Item:
237.82 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.