Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/49371 
Authors: 
Year of Publication: 
2004
Series/Report no.: 
Technical Report No. 2004,07
Publisher: 
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund
Abstract: 
Wirtschaftsdaten als Objekte von Prognosen sind meist metrischer Natur: Arbeitslosenzahlen, Aktienkurse, Umsätze, Erlöse usw., alle sind quantitative Variable, bei denen sich Prognosen und realisierte Werte, wie auch konkurrierende Prognosen, leicht vergleichen lassen. Anders die Lage bei qualitativen, speziell dichotomen 0-1-Variablen, die im Zentrum der folgenden Überlegungen stehen. Hier ist der Vergleich von Prognosen und realisierten Werten, wie auch der Qualitätsvergleich konkurrierender Prognosen, erheblich schwerer. Das folgende Kapitel diskutiert diese Problematik anhand von Kreditausfallprognosen. Unter Hintanstellung von Problemen, die mit der Definition von Kreditausfall verbunden sind, gibt es hier zwei Möglichkeiten: (i) der Kredit fällt aus und (ii) der Kredit fällt nicht aus, und die zahlreichen Verfahren, die es gibt - Diskriminanzanalyse, Logit- und Probit-Modelle, Neuronale Netze und Klassifikationsbäume - dieses Ereignis vorherzusagen (siehe Arminger et al. 1997 oder Blum et al. 2003 für eine Übersicht) müssen mit zwei Arten von Fehlern leben: Bei der Prognose Kein Ausfall tritt dennoch ein Ausfall ein - der Alpha-Fehler - oder bei einer Prognose von Ausfall tritt kein Ausfall ein - der Beta-Fehler. Je nach Bewertung und Wahrscheinlichkeit von Alpha- und Beta-Fehler lassen sich konkurrierende Prognosen dann hinsichtlich ihrer Prognosequalität vergleichen. Die einschlägigen Methoden sind seit langem wohlbekannt (siehe etwa Oehler und unser 2001, Kapitel III.2) und müssen hier nicht weiter erörtert werden. Die folgende Diskussion konzentriert sich vielmehr auf Prognosen, die nur die Wahrscheinlichkeiten für das interessierende Ereignis betreffen: Die Ausfallwahrscheinlichkeit bei Kredit X beträgt Y% mit 0 < Y < 100%. Dergleichen Wahrscheinlichkeitsprognosen haben in der Meteorologie und in der Medizin eine lange Tradition (siehe etwa DeGroot und Fienberg 1983, Redelmann et al. 1991 oder Winkler 1996), sind aber mit der wachsenden Bedeutung von Ratings und Rating-Agenturen im modernen Wirtschaftsleben auch dort in letzter Zeit vermehrt ins Rampenlicht getreten. Nimmt man noch die im Kielwasser von Basel II auf alle Geschäftsbanken zukommende Verpflichtung zur Belegung aller vergebenen Kredite mit Ausfallwahrscheinlichkeiten hinzu, so werden Wahrscheinlichkeitsprognosen in naher Zukunft zu den häufigsten Wirtschaftsprognosen überhaupt gehören.
Document Type: 
Working Paper

Files in This Item:
File
Size
204.64 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.