Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/32454
Authors: 
Jordà, Òscar
Knüppel, Malte
Marcellino, Massimiliano
Year of Publication: 
2010
Series/Report no.: 
Discussion Paper Series 1: Economic Studies 2010,06
Abstract: 
Measuring and displaying uncertainty around path-forecasts, i.e. forecasts made in period T about the expected trajectory of a random variable in periods T+1 to T+H is a key ingredient for decision making under uncertainty. The probabilistic assessment about the set of possible trajectories that the variable may follow over time is summarized by the simultaneous confidence region generated from its forecast generating distribution. However, if the null model is only approximative or altogether unavailable, one cannot derive analytic expressions for this confidence region, and its non-parametric estimation is impractical given commonly available predictive sample sizes. Instead, this paper derives the approximate rectangular confidence regions that control false discovery rate error, which are a function of the predictive sample covariance matrix and the empirical distribution of the Mahalanobis distance of the path-forecast errors. These rectangular regions are simple to construct and appear to work well in a variety of cases explored empirically and by simulation. The proposed techniques are applied to provide confidence bands around the Fed and Bank of England real-time path-forecasts of growth and inflation.
Subjects: 
Path forecast
forecast uncertainty
simultaneous confidence region
Scheffé's S-method
Mahalanobis distance
false discovery rate
JEL: 
C32
C52
C53
ISBN: 
978-3-86558-605-6
Document Type: 
Working Paper

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.