Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/323152 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Ekonomika [ISSN:] 2424-6166 [Volume:] 103 [Issue:] 2 [Year:] 2024 [Pages:] 140-160
Verlag: 
Vilnius University Press, Vilnius
Zusammenfassung: 
Mortgage default prediction is always on the table for financial institutions. Banks are interested in provision planning, while regulators monitor systemic risk, which this sector may possess. This research is focused on predicting defaults on a one-year horizon using data from the Ukrainian credit registry applying machine-learning methods. This research is useful for not only academia but also policymakers since it helps to assess the need for implementation of macroprudential instruments. We tested two data balancing techniques: weighting the original sample and synthetic minority oversampling technique and compared the results. It was found that random forest and extreme gradient-boosting decision trees are better classifiers regarding both accuracy and precision. These models provided an essential balance between actual default precision and minimizing false defaults. We also tested neural networks, linear discriminant analysis, support vector machines with linear kernels, and decision trees, but they showed similar results to logistic regression. The result suggested that real gross domestic product (GDP) growth and debt-service-to-income ratio (DSTI) were good predictors of default. This means that a realistic GDP forecast as well as a proper assessment of the borrower's DSTI through the loan history can predict default on a one-year horizon. Adding other variables such as the borrower's age and loan interest rate can also be beneficial. However, the residual maturity of mortgage loans does not contribute to default probability, which means that banks should treat both new borrowers equally and those who nearly repaid the loan.
Schlagwörter: 
classification
default prediction
extreme gradient-boosting decision tree
machine learning
mortgage lending
random forest
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
2.03 MB





Publikationen in EconStor sind urheberrechtlich geschützt.