Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/317687 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Journal of Business Economics and Management (JBEM) [ISSN:] 2029-4433 [Volume:] 25 [Issue:] 3 [Year:] 2024 [Pages:] 437-454
Verlag: 
Vilnius Gediminas Technical University, Vilnius
Zusammenfassung: 
Extensive analysis of intertwinement with other industries caused the energy sector to gain momentum in the recent economic literature. This paper aims to create an indicator that captures the impact of financial stability for energy companies on all other industrial groups. To this end, we use daily data from 2007 until the end of 2021 to compute financial stability metrics for all European companies from the STOXX 600 index. The main contribution of our study is to harness the neural network forecasting power to predict extreme levels of this impact. We motivate this choice with evidence from the literature that documents the improved performance of these methods in predicting crises. Our methodological approach also employs an outlier detection algorithm based on copula (COPOD) to identify situations when the energy sector substantially impacts other industries and develop a framework to predict out-of-sample situations. We found evidence that the Deep Renewal model has superior forecasting accuracy to the standard Croston model. The main conclusion is that the design of this methodological framework allows authorities to monitor the impact of shocks produced by the energy sector on financial stability at the European level and undertake strategic management actions.
Schlagwörter: 
COPOD
Deep Renewal process
energy
European companies
extreme levels
financial stability
JEL: 
D53
Q40
C53
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
2.36 MB





Publikationen in EconStor sind urheberrechtlich geschützt.