Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/315158 
Erscheinungsjahr: 
2025
Schriftenreihe/Nr.: 
CEBI Working Paper Series No. 04/25
Verlag: 
University of Copenhagen, Department of Economics, Center for Economic Behavior and Inequality (CEBI), Copenhagen
Zusammenfassung: 
We study how individuals update their beliefs in the presence of competing datagenerating processes, or models, that could explain observed data. Through experiments, we identify the weights participants assign to different models and find that the most common updating rule gives full weight to the model that best fits the data. While some participants assign positive weights to multiple models- consistent with Bayesian updating-they often do so in a systematically biased manner. Moreover, these biases in model weighting frequently lead participants to become more certain about a state regardless of the data, violating a core property of Bayesian updating.
Schlagwörter: 
Belief Updating
Narratives
Mental Models
Experiments
JEL: 
D83
D9
C90
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
7.06 MB





Publikationen in EconStor sind urheberrechtlich geschützt.