Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/315076 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Information Systems and e-Business Management [ISSN:] 1617-9854 [Volume:] 22 [Issue:] 3 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2024 [Pages:] 457-500
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract Past generations of BPM involved the efficient and effective management of business processes. Yet, we currently face a turning point. The technological facets of data-driven BPM add complexity to traditional BPM applications. As a result, organizations face intended and unintended technology-related changes across all business process initiatives. Using the term BP-x, we summarize the recent changes in BPM knowledge that has hitherto been fragmented across academic literature. To address the challenges of BP-x initiatives, we envision a holistic model that focuses on managing related cutting-edge technologies and BPM. Thus, we propose the operationalized BP-x management model as a valuable IT meta-artifact. We develop the model using a two-cycled Design Science Research methodology and conduct a threefold summative evaluation. The results of our study indicate that creating awareness of potentials and opportunities accelerates the process toward action and fosters new business outcomes in terms of performance and innovation. By strategically aligning BP-x endeavors, organizations promote visibility, shared understanding, and culture among stakeholders. Our model guides managers throughout the BP-x adoption journey in conjunction with organizational, managerial, and technological prerequisites.
Schlagwörter: 
BPM
Process analytics
Predictive analytics
Prescriptive analytics
Process automation
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.