Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/314982 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Social Choice and Welfare [ISSN:] 1432-217X [Volume:] 63 [Issue:] 1 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2024 [Pages:] 19-55
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract Social decision schemes (SDSs) map the preferences of a group of voters over some set of m alternatives to a probability distribution over the alternatives. A seminal characterization of strategyproof SDSs by Gibbard (Econometrica 45(3):665–681, 1977) implies that there are no strategyproof Condorcet extensions and that only random dictatorships satisfy ex post efficiency and strategyproofness. The latter is known as the random dictatorship theorem . We relax Condorcet-consistency and ex post efficiency by introducing a lower bound on the probability of Condorcet winners and an upper bound on the probability of Pareto-dominated alternatives, respectively. We then show that the randomized Copeland rule is the only anonymous, neutral, and strategyproof SDS that guarantees the Condorcet winner a probability of at least 2/ m . Secondly, we prove a continuous strengthening of Gibbard’s random dictatorship theorem: the less probability we put on Pareto-dominated alternatives, the closer to a random dictatorship is the resulting SDS. Finally, we show that the only anonymous, neutral, and strategyproof SDSs that maximize the probability of Condorcet winners while minimizing the probability of Pareto-dominated alternatives are mixtures of the uniform random dictatorship and the randomized Copeland rule.
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.