Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/314171 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Journal of Applied Economics [ISSN:] 1667-6726 [Volume:] 25 [Issue:] 1 [Year:] 2022 [Pages:] 454-475
Verlag: 
Taylor & Francis, Abingdon
Zusammenfassung: 
Modeling futures market risk simultaneously influenced by macro low-frequency information and daily risk factors is a valuable challenge. We propose a new general framework for it based on the flexible GARCH-MIDAS model. It uses a skewed t distribution to describe the asymmetry of long and short trading positions, allows for a different number of trading days per month, and can identify the optimal combination of risky factors. We also derive its impact response function on how low-frequency factors directly influence the high-frequency futures market risk. Through an exhaustive empirical analysis of the Chinese soybean futures market, we not only find its excellent out-of-sample market risk forecasting performance but also offer systematic recommendations for improving risk management.
Schlagwörter: 
GARCH-MIDAS
futures market
skewed t distribution
value at risk
volatility
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
1.25 MB





Publikationen in EconStor sind urheberrechtlich geschützt.