Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/313671 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] European Actuarial Journal [ISSN:] 2190-9741 [Volume:] 14 [Issue:] 2 [Publisher:] Springer Berlin Heidelberg [Year:] 2023 [Pages:] 551-580
Verlag: 
Springer Berlin Heidelberg
Zusammenfassung: 
Abstract The quality of generalized linear models (GLMs), frequently used by insurance companies, depends on the choice of interacting variables. The search for interactions is time-consuming, especially for data sets with a large number of variables, depends much on expert judgement of actuaries, and often relies on visual performance indicators. Therefore, we present an approach to automating the process of finding interactions that should be added to GLMs to improve their predictive power. Our approach relies on neural networks and a model-specific interaction detection method, which is computationally faster than the traditionally used methods like Friedman’s H-Statistic or SHAP values. In numerical studies, we provide the results of our approach on artificially generated data as well as open-source data.
Schlagwörter: 
Neural network
Model interpretability
Generalized linear model
Interaction detection
Insurance claims prediction
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.