Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/313393 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Optimization Letters [ISSN:] 1862-4480 [Volume:] 17 [Issue:] 6 [Publisher:] Springer Berlin Heidelberg [Year:] 2022 [Pages:] 1379-1412
Verlag: 
Springer Berlin Heidelberg
Zusammenfassung: 
Abstract We develop a Nash equilibrium problem representing a perfectly competitive market wherein all players are subject to the same source of uncertainty with an unknown probability distribution. Each player—depending on her individual access to and confidence over empirical data—builds an ambiguity set containing a family of potential probability distributions describing the uncertain event. The ambiguity set of different players is not necessarily identical, yielding a market with potentially heterogeneous ambiguity aversion. Built upon recent developments in the field of Wasserstein distributionally robust chance-constrained optimization, each ambiguity-averse player maximizes her own expected payoff under the worst-case probability distribution within her ambiguity set. Using an affine policy and a conditional value-at-risk approximation of chance constraints, we define a tractable Nash game. We prove that under certain conditions a unique Nash equilibrium point exists, which coincides with the solution of a single optimization problem. Numerical results indicate that players with comparatively lower consumption utility are highly exposed to rival ambiguity aversion.
Schlagwörter: 
Distributionally robust equilibrium problem
Nash game
Wasserstein ambiguity set
Heterogeneous ambiguity aversion
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.